Skip to main content

A Python port of Generalized Watersheds Loading Functions - Enhanced (MapShed)

Project description

gwlf-e

Port of Generalized Watersheds Loading Functions - Enhanced (MapShed)

Installation

Install using pip:

$ pip install gwlf-e

For Linux x64 on Python 3.8, 3.9, and 3.10 the above will pull a published wheel. For other platforms, a wheel would have to be built. In that case, you may also need to install setuptools, wheel, and build to compile it locally:

$ pip install wheel build
$ pip install --no-build-isolation gwlf-e

Development

Ensure you have Python 3.10 and pipenv available. Then run:

$ pipenv sync

Running Locally

$ pipenv run ./run.py --json test/integrationtests/input_4_output.json test/integrationtests/input_4.gms

Testing

$ pipenv run nosetests

Deployments

Create a new release using git flow:

$ git flow release start 3.0.0
$ vim CHANGELOG.md
$ vim setup.py
$ git add CHANGELOG.md setup.py
$ git commit -m "3.0.0"
$ git flow release finish -p 3.0.0

When the tag is pushed up, GitHub Actions will publish a release to PyPI.

License

This project is licensed under the terms of the Apache 2.0 license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gwlf_e-3.2.0.tar.gz (1.3 MB view details)

Uploaded Source

Built Distributions

gwlf_e-3.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

gwlf_e-3.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

gwlf_e-3.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

File details

Details for the file gwlf_e-3.2.0.tar.gz.

File metadata

  • Download URL: gwlf_e-3.2.0.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for gwlf_e-3.2.0.tar.gz
Algorithm Hash digest
SHA256 2e26b07472f27d0ff011c43d2206989c3cdf78da489eaaf8041cf495ac86a600
MD5 bcab5393944739c6a8a35c534b3b8c5d
BLAKE2b-256 ab2492c2bfe7fd366b39433070b8aea6d75979100782e2d833476f006fe76e6f

See more details on using hashes here.

File details

Details for the file gwlf_e-3.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gwlf_e-3.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fc01a8cc3b19fd97b68820f34dd7b49f86981aa843885a508ded24136babeb91
MD5 31613cfcc753380a690f370b3922cf8e
BLAKE2b-256 2f78ed87c46194cd3ff884ec485fd9339aa40b6aa7c72950340b0314179479cf

See more details on using hashes here.

File details

Details for the file gwlf_e-3.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gwlf_e-3.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 09438b61c5954c3860548e63f6af8bafd34ce9143c06769791f6622b045d56ec
MD5 8dcb365fb40a47be24357a08fe7e1c2e
BLAKE2b-256 7c8eb18abf242d79dcdf57cff24610a610d54a09303d703a0301e04a872bcbcc

See more details on using hashes here.

File details

Details for the file gwlf_e-3.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gwlf_e-3.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a9055ee3a8f19d68e5c7889bc00552469f212d4401e23cf7b26adadf7f0407e5
MD5 a7f635a2e48cc10dfa1c879181fa54a5
BLAKE2b-256 e04ea96b3efb3fd813a299edf28738e6084bb8fbebdad71cd9dcd29c111b490d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page