Skip to main content

CAS tools for danish high schools.

Project description

GYM CAS

PyPI - Version PyPI - Python Version Coverage

Hjælpepakke til at bruge Python som CAS (Computational Algebra System) i gymnasiet.

Installation

pip install gym-cas

eller

py -m pip install gym-cas

Cheatsheet

I nedenstående afsnit antages det at gym_cas først importeres således:

from gym_cas import *

B1. Tal- og bogstavregning

expand( udtryk )
factor( udtryk )

B2. Ligninger og uligheder

solve( udtryk )
solve( [udtryk1, udtryk2] )
nsolve( udtryk, start )

Bemærk at den nemmeste måde at bruge solve i SymPy er ved at omforme sin ligning så en af siderne er lig 0. Hvis man fx vil løse ligningen x/2 = 10 så kan det skrives solve(x/2-10).

B3. Geometri og trigonometri

Sin( vinkel )
Cos( vinkel )
Tan( vinkel )
aSin( forhold )
aCos( forhold )
aTan( forhold )

B4. Analytisk plangeometri

plot_list( X_list ,Y_list, is_point=True)
plot( funktion )
plot_implicit( udtryk ,xlim=( x_min, x_max),ylim=( y_min, y_max))
plot_geometry( Geometrisk objekt )

Flere grafer i en afbildning

p1 = plot( udtryk1 )
p2 = plot( udtryk2 )
p = p1 + p2
p.show()

B5. Vektorer

a = Matrix([x,y])
a.dot(b)
plot_vector( vektor )
plot_vector( start, vektor )
plot_vector( [vektor1, vektor2, ...])

B6. Deskriptiv Statistik

Ugrupperet

max( data )
min( data )
mean( data )
median( data )
var( data, ddof )
std( data, ddof ) 
kvartiler( data )
percentile( data , procenter )
frekvenstabel( data )
boxplot( data ) 
plot_sum( data )

Grupperet

group_mean( data, grupper )
group_percentile( data, grupper, procenter )
group_var( data, grupper, ddof )
group_std( data, grupper, ddof ) 
frekvenstabel( data, grupper )
boxplot( data, grupper ) 
plot_sum( data, grupper )
plot_hist( data, grupper )

B8. Funktioner

def f(x):
    return funktionsudtryk
f(3)

def f(x):
    return Piecewise(( funktion1, betingelse1), (funktion2, betingelse2))

plot( funktion , yscale="log")
plot( funktion , (variabel, start, stop), xscale="log", yscale="log")
regression_poly(X,Y, grad)
regression_power(X,Y)
regression_exp(X,Y)

B9. Differentialregning

limit( udtryk, variabel, grænse, retning )
diff( funktion )
def df(xi):
    return diff( funktion ).subs( variabel, xi )

B10. Integralregning

integrate( udtryk )
integrate( udtryk, ( variabel, start, slut ))

A1. Vektorer i rummet

a = Matrix([1,2,3])
a.cross(b)
plot3d_list( X, Y, is_point=True)
plot_vector( a )
plot3d_line( a + t * r )
plot3d_plane( a + s * r1 + t * r2 )
plot3d_implicit( ligning, backend=PB ) # Kræver Plotly eller K3D

A4. Differentialligninger

f = Function('f')
dsolve( ode )
plot_ode( ode, f, (x, start, stop), (f, start, stop))

A5. Diskret Matematik

X = [ udregning for x in range(start,slut)]
X = [ startbetingelse ]
for i in range(start, slut):
    X.append( rekursionsligning )

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gym_cas-0.3.1.tar.gz (37.0 kB view details)

Uploaded Source

Built Distribution

gym_cas-0.3.1-py3-none-any.whl (16.4 kB view details)

Uploaded Python 3

File details

Details for the file gym_cas-0.3.1.tar.gz.

File metadata

  • Download URL: gym_cas-0.3.1.tar.gz
  • Upload date:
  • Size: 37.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.25.2

File hashes

Hashes for gym_cas-0.3.1.tar.gz
Algorithm Hash digest
SHA256 94bdef92bc8563ac74cfa88576a1a4ed58d7ad7f09de47d940cce2c36d354f70
MD5 a242a985325d0a9177b34364b13c7e4d
BLAKE2b-256 0c93798cb0e887f629304e86b1763aa887943686b89eb618dfb23c84599eeaf5

See more details on using hashes here.

File details

Details for the file gym_cas-0.3.1-py3-none-any.whl.

File metadata

  • Download URL: gym_cas-0.3.1-py3-none-any.whl
  • Upload date:
  • Size: 16.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.25.2

File hashes

Hashes for gym_cas-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 9b6407c356090328efb8fac4582a8a1ee75826f2e89daf8214c293e5ea6d7821
MD5 723805c81ce7497dac3138a54b21e736
BLAKE2b-256 6a88578577ba9a1818ed2588aa83096cd989235bef06a3bd9a8579319b7f4508

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page