Skip to main content

CAS tools for danish high schools.

Project description

GYM CAS

PyPI - Version PyPI - Python Version Coverage

Hjælpepakke til at bruge Python som CAS (Computational Algebra System) i gymnasiet.

Installation

pip install gym-cas

eller

py -m pip install gym-cas

Cheatsheet

I nedenstående afsnit antages det at gym_cas først importeres således:

from gym_cas import *

B1. Tal- og bogstavregning

expand( udtryk )
factor( udtryk )

B2. Ligninger og uligheder

solve( udtryk )
solve( [udtryk1, udtryk2] )
nsolve( udtryk, start )

Bemærk at den nemmeste måde at bruge solve i SymPy er ved at omforme sin ligning så en af siderne er lig 0. Hvis man fx vil løse ligningen x/2 = 10 så kan det skrives solve(x/2-10).

B3. Geometri og trigonometri

Sin( vinkel )
Cos( vinkel )
Tan( vinkel )
aSin( forhold )
aCos( forhold )
aTan( forhold )

B4. Analytisk plangeometri

plot_list( X_list ,Y_list, is_point=True)
plot( funktion )
plot_implicit( udtryk ,xlim=( x_min, x_max),ylim=( y_min, y_max))
plot_geometry( Geometrisk objekt )

Flere grafer i en afbildning

p1 = plot( udtryk1 )
p2 = plot( udtryk2 )
p = p1 + p2
p.show()

B5. Vektorer

a = Matrix([x,y])
a.dot(b)
plot_vector( vektor )
plot_vector( start, vektor )
plot_vector( [vektor1, vektor2, ...])

B6. Deskriptiv Statistik

Ugrupperet

max( data )
min( data )
mean( data )
median( data )
var( data, ddof )
std( data, ddof ) 
kvartiler( data )
percentile( data , procenter )
frekvenstabel( data )
boxplot( data ) 
plot_sum( data )

Grupperet

group_mean( data, grupper )
group_percentile( data, grupper, procenter )
group_var( data, grupper, ddof )
group_std( data, grupper, ddof ) 
frekvenstabel( data, grupper )
boxplot( data, grupper ) 
plot_sum( data, grupper )
plot_hist( data, grupper )

B8. Funktioner

def f(x):
    return funktionsudtryk
f(3)

def f(x):
    return Piecewise(( funktion1, betingelse1), (funktion2, betingelse2))

plot( funktion , yscale="log")
plot( funktion , (variabel, start, stop), xscale="log", yscale="log")
regression_poly(X,Y, grad)
regression_power(X,Y)
regression_exp(X,Y)

B9. Differentialregning

limit( udtryk, variabel, grænse, retning )
diff( funktion )
def df(xi):
    return diff( funktion ).subs( variabel, xi )

B10. Integralregning

integrate( udtryk )
integrate( udtryk, ( variabel, start, slut ))

A1. Vektorer i rummet

a = Matrix([1,2,3])
a.cross(b)
plot3d_list( X, Y, is_point=True)
plot_vector( a )
plot3d_line( a + t * r )
plot3d_plane( a + s * r1 + t * r2 )
plot3d_implicit( ligning, backend=PB ) # Kræver Plotly eller K3D

A4. Differentialligninger

f = Function('f')
dsolve( ode )
plot_ode( ode, f, (x, start, stop), (f, start, stop))

A5. Diskret Matematik

X = [ udregning for x in range(start,slut)]
X = [ startbetingelse ]
for i in range(start, slut):
    X.append( rekursionsligning )

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gym_cas-0.3.12.tar.gz (38.3 kB view details)

Uploaded Source

Built Distribution

gym_cas-0.3.12-py3-none-any.whl (17.9 kB view details)

Uploaded Python 3

File details

Details for the file gym_cas-0.3.12.tar.gz.

File metadata

  • Download URL: gym_cas-0.3.12.tar.gz
  • Upload date:
  • Size: 38.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.25.2

File hashes

Hashes for gym_cas-0.3.12.tar.gz
Algorithm Hash digest
SHA256 f3c96613913dbda741ba6fdf6907f797ac6b9e87a03cd3031607b44e1cf72937
MD5 8066a9f23f1f2a17653f2d92815e8028
BLAKE2b-256 acaacb9dbf852c314d59f0d74c4be1da76faf409df0506399d667d58c82d4d79

See more details on using hashes here.

File details

Details for the file gym_cas-0.3.12-py3-none-any.whl.

File metadata

  • Download URL: gym_cas-0.3.12-py3-none-any.whl
  • Upload date:
  • Size: 17.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.25.2

File hashes

Hashes for gym_cas-0.3.12-py3-none-any.whl
Algorithm Hash digest
SHA256 d8d8ec3a8639818b95b13c435bf73f3bd53fee75d5e92167e51ce7ecfbfe69cc
MD5 859321e94412a22b58460854b95d6e58
BLAKE2b-256 09767258193e3bee873f767b70f7740dd59cdbb0321b4bb5fb1f275c95d7a9fe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page