Skip to main content

CAS tools for danish high schools.

Project description

GYM CAS

PyPI - Version PyPI - Python Version Coverage

Hjælpepakke til at bruge Python som CAS (Computational Algebra System) i gymnasiet.

Installation

pip install gym-cas

eller

py -m pip install gym-cas

Cheatsheet

I nedenstående afsnit antages det at gym_cas først importeres således:

from gym_cas import *

B1. Tal- og bogstavregning

expand( udtryk )
factor( udtryk )

B2. Ligninger og uligheder

solve( udtryk )
solve( [udtryk1, udtryk2] )
nsolve( udtryk, start )

Bemærk at den nemmeste måde at bruge solve i SymPy er ved at omforme sin ligning så en af siderne er lig 0. Hvis man fx vil løse ligningen x/2 = 10 så kan det skrives solve(x/2-10).

B3. Geometri og trigonometri

Sin( vinkel )
Cos( vinkel )
Tan( vinkel )
aSin( forhold )
aCos( forhold )
aTan( forhold )

B4. Analytisk plangeometri

plot_list( X_list ,Y_list, is_point=True)
plot( funktion )
plot_implicit( udtryk ,xlim=( x_min, x_max),ylim=( y_min, y_max))
plot_geometry( Geometrisk objekt )

Flere grafer i en afbildning

p1 = plot( udtryk1 )
p2 = plot( udtryk2 )
p = p1 + p2
p.show()

B5. Vektorer

a = Matrix([x,y])
a.dot(b)
plot_vector( vektor )
plot_vector( start, vektor )
plot_vector( [vektor1, vektor2, ...])

B6. Deskriptiv Statistik

Ugrupperet

max( data )
min( data )
mean( data )
median( data )
var( data, ddof )
std( data, ddof ) 
kvartiler( data )
percentile( data , procenter )
frekvenstabel( data )
boxplot( data ) 
plot_sum( data )

Grupperet

group_mean( data, grupper )
group_percentile( data, grupper, procenter )
group_var( data, grupper, ddof )
group_std( data, grupper, ddof ) 
frekvenstabel( data, grupper )
boxplot( data, grupper ) 
plot_sum( data, grupper )
plot_hist( data, grupper )

B8. Funktioner

def f(x):
    return funktionsudtryk
f(3)

def f(x):
    return Piecewise(( funktion1, betingelse1), (funktion2, betingelse2))

plot( funktion , yscale="log")
plot( funktion , (variabel, start, stop), xscale="log", yscale="log")
regression_poly(X,Y, grad)
regression_power(X,Y)
regression_exp(X,Y)

B9. Differentialregning

limit( udtryk, variabel, grænse, retning )
diff( funktion )
def df(xi):
    return diff( funktion ).subs( variabel, xi )

B10. Integralregning

integrate( udtryk )
integrate( udtryk, ( variabel, start, slut ))

A1. Vektorer i rummet

a = Matrix([1,2,3])
a.cross(b)
plot3d_list( X, Y, is_point=True)
plot_vector( a )
plot3d_line( a + t * r )
plot3d_plane( a + s * r1 + t * r2 )
plot3d_implicit( ligning, backend=PB ) # Kræver Plotly eller K3D

A4. Differentialligninger

f = Function('f')
dsolve( ode )
plot_ode( ode, f, (x, start, stop), (f, start, stop))

A5. Diskret Matematik

X = [ udregning for x in range(start,slut)]
X = [ startbetingelse ]
for i in range(start, slut):
    X.append( rekursionsligning )

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gym_cas-0.3.3.tar.gz (37.4 kB view details)

Uploaded Source

Built Distribution

gym_cas-0.3.3-py3-none-any.whl (16.3 kB view details)

Uploaded Python 3

File details

Details for the file gym_cas-0.3.3.tar.gz.

File metadata

  • Download URL: gym_cas-0.3.3.tar.gz
  • Upload date:
  • Size: 37.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.25.2

File hashes

Hashes for gym_cas-0.3.3.tar.gz
Algorithm Hash digest
SHA256 0ace6e22e7f16e711465e9ddf1e14019ccc8a2ae2d101575420d732a7085bb64
MD5 c100b04d030edc64c416e1ccf426b285
BLAKE2b-256 b04c999b78c091d4291f87229d6c05745657bcc983ba4c77751fe76c7d2d015c

See more details on using hashes here.

File details

Details for the file gym_cas-0.3.3-py3-none-any.whl.

File metadata

  • Download URL: gym_cas-0.3.3-py3-none-any.whl
  • Upload date:
  • Size: 16.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.25.2

File hashes

Hashes for gym_cas-0.3.3-py3-none-any.whl
Algorithm Hash digest
SHA256 f33157c0c478b378943d064b55432228a9b970509a2f35f619c8e227d94f5ff5
MD5 99be71eced5783dc33fe018e0fd30407
BLAKE2b-256 e42378535edd60696cd9c2f32896a18ae12cde656e8797bc7430c05d2bc7e781

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page