Skip to main content

CAS tools for danish high schools.

Project description

GYM CAS

PyPI - Version PyPI - Python Version Coverage

Anvend Python som CAS (Computational Algebra System) i gymnasiet. Bygger på følgende moduler:

Installation

pip install gym-cas

eller

py -m pip install gym-cas

Cheatsheet

I nedenstående afsnit antages det at gym_cas først importeres således:

from gym_cas import *

B1. Tal- og bogstavregning

expand( udtryk )
factor( udtryk )

B2. Ligninger og uligheder

solve( udtryk )
solve( [udtryk1, udtryk2] )
nsolve( udtryk, start )

Bemærk at den nemmeste måde at bruge solve i SymPy er ved at omforme sin ligning så en af siderne er lig 0. Hvis man fx vil løse ligningen x/2 = 10 så kan det skrives solve(x/2-10).

B3. Geometri og trigonometri

Sin( vinkel )
Cos( vinkel )
Tan( vinkel )
aSin( forhold )
aCos( forhold )
aTan( forhold )

B4. Analytisk plangeometri

plot_list( X_list ,Y_list, is_point=True)
plot( funktion )
plot_implicit( udtryk ,xlim=( x_min, x_max),ylim=( y_min, y_max))
plot_geometry( Geometrisk objekt )

Flere grafer i en afbildning

p1 = plot( udtryk1 )
p2 = plot( udtryk2 )
p = p1 + p2
p.show()

B5. Vektorer

a = vector(x,y)
a.dot(b)
plot_vector( vektor )
plot_vector( start, vektor )
plot_vector( [vektor1, vektor2, ...])

B6. Deskriptiv Statistik

Ugrupperet

max( data )
min( data )
mean( data )
median( data )
var( data, ddof )
std( data, ddof ) 
kvartiler( data )
percentile( data , procenter )
frekvenstabel( data )
boxplot( data ) 
plot_sum( data )

Grupperet

group_mean( data, grupper )
group_percentile( data, grupper, procenter )
group_var( data, grupper, ddof )
group_std( data, grupper, ddof ) 
frekvenstabel( data, grupper )
boxplot( data, grupper ) 
plot_sum( data, grupper )
plot_hist( data, grupper )

B8. Funktioner

def f(x):
    return funktionsudtryk
f(3)

def f(x):
    return Piecewise(( funktion1, betingelse1), (funktion2, betingelse2))

plot( funktion , yscale="log")
plot( funktion , (variabel, start, stop), xscale="log", yscale="log")
regression_poly(X,Y, grad)
regression_power(X,Y)
regression_exp(X,Y)

B9. Differentialregning

limit( udtryk, variabel, grænse, retning )
diff( funktion )
def df(xi):
    return diff( funktion ).subs( variabel, xi )

B10. Integralregning

integrate( udtryk )
integrate( udtryk, ( variabel, start, slut ))

A1. Vektorer i rummet

a = vector(1,2,3)
a.cross(b)
plot3d_list( X, Y, is_point=True)
plot_vector( a )
plot3d_line( a + t * r )
plot3d_plane( a + s * r1 + t * r2 )
plot3d_implicit( ligning, backend=PB ) # Kræver Plotly eller K3D

A4. Differentialligninger

f = Function('f')
dsolve( ode )
plot_ode( ode, (x, start, stop), (f, start, stop))

A5. Diskret Matematik

X = [ udregning for x in range(start,slut)]
X = [ startbetingelse ]
for i in range(start, slut):
    X.append( rekursionsligning )

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gym_cas-0.4.3.tar.gz (30.3 kB view details)

Uploaded Source

Built Distribution

gym_cas-0.4.3-py3-none-any.whl (20.3 kB view details)

Uploaded Python 3

File details

Details for the file gym_cas-0.4.3.tar.gz.

File metadata

  • Download URL: gym_cas-0.4.3.tar.gz
  • Upload date:
  • Size: 30.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.25.2

File hashes

Hashes for gym_cas-0.4.3.tar.gz
Algorithm Hash digest
SHA256 6169f168cb7b2e5c405aa7ca5dec3d5c557724b04c9b83cc0255c94fc18fa304
MD5 18e8871b077cd87be820bd699ef84619
BLAKE2b-256 3eea72239799e9bcd820b08cecd37133329cbe1a4d65a74da0a5fc109e6d5220

See more details on using hashes here.

File details

Details for the file gym_cas-0.4.3-py3-none-any.whl.

File metadata

  • Download URL: gym_cas-0.4.3-py3-none-any.whl
  • Upload date:
  • Size: 20.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.25.2

File hashes

Hashes for gym_cas-0.4.3-py3-none-any.whl
Algorithm Hash digest
SHA256 1b6d4f9fdd7519902c4426384923bc9d7f1738621b1412659b4b838359ef6fd8
MD5 22d77b4532f558cd56fd5dd74d33db2d
BLAKE2b-256 858042474d08208e38c25415ed3b9e84b7aa6415e76f0c998f5e164be3f9822a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page