A variant of https://github.com/DavidRother/cooking_zoo used in LIPO
Project description
Multi-recipe Overcooked used in LIPO
A variant of https://github.com/DavidRother/cooking_zoo used in LIPO.
Installation
pip install gym-cooking-lipo
Examples
Environment creation
from gym_cooking.environment.game.game import Game
from gym_cooking.environment import cooking_zoo
n_agents = 2
max_steps = 100
render = False
level = "full_divider_salad_4"
seed = 1
record = False
max_num_timesteps = 1000
recipes = [
"LettuceSalad",
"TomatoSalad",
"TomatoLettuceSalad",
"TomatoCarrotSalad",
"ChoppedCarrot",
"ChoppedOnion",
]
env = parallel_env = cooking_zoo.parallel_env(
level=level,
num_agents=n_agents,
record=record,
max_steps=max_num_timesteps,
recipes=recipes,
obs_spaces=["dense"],
)
obs = env.reset()
print(obs)
Human-AI gameplay
from gym_cooking.environment.game.game import Game
from gym_cooking.environment import cooking_zoo
n_agents = 2
num_humans = 1
max_steps = 100
render = False
level = "full_divider_salad_4" # 'open_room_salad_easy'
seed = 1
record = False
max_num_timesteps = 1000
recipes = [
"LettuceSalad",
"TomatoSalad",
"ChoppedCarrot",
"ChoppedOnion",
"TomatoLettuceSalad",
"TomatoCarrotSalad",
]
parallel_env = cooking_zoo.parallel_env(
level=level,
num_agents=n_agents,
record=record,
max_steps=max_num_timesteps,
recipes=recipes,
obs_spaces=["dense"],
interact_reward=0.5,
progress_reward=1.0,
complete_reward=10.0,
step_cost=0.05,
)
action_spaces = parallel_env.action_spaces
class CookingAgent:
def __init__(self, action_space):
self.action_space = action_space
def get_action(self, observation) -> int:
return self.action_space.sample()
player_2_action_space = action_spaces["player_1"]
cooking_agent = CookingAgent(player_2_action_space)
game = Game(parallel_env, num_humans, [cooking_agent], max_steps, render=False)
store = game.on_execute()
print("done")
Single-player gameplay
from gym_cooking.environment.game.game import Game
from gym_cooking.environment import cooking_zoo
n_agents = 1
num_humans = 1
max_steps = 100
render = False
level = "open_room_blender"
seed = 1
record = False
max_num_timesteps = 100
recipes = ["ChoppedCarrot", "LettuceSalad"]
parallel_env = cooking_zoo.parallel_env(
level=level,
num_agents=n_agents,
record=record,
max_steps=max_num_timesteps,
recipes=recipes,
obs_spaces=["dense"],
)
game = Game(parallel_env, num_humans, [], max_steps)
store = game.on_execute()
print("done")
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file gym_cooking_lipo-0.0.2.tar.gz
.
File metadata
- Download URL: gym_cooking_lipo-0.0.2.tar.gz
- Upload date:
- Size: 2.9 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.8.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | dba9cf342d2a165db5acc077d50f9897c224dd6846628605338dad0af9d7d2e8 |
|
MD5 | 7e11f49434ea158ac663050c42b52ecb |
|
BLAKE2b-256 | 8858e02819d4914cc1d0323ff419201f6f74177a1261f5aae9729ad20748df6e |
File details
Details for the file gym_cooking_lipo-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: gym_cooking_lipo-0.0.2-py3-none-any.whl
- Upload date:
- Size: 2.9 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.8.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bff8c20c56ba929f6f1904372649b63767ec83e6c11c51cc872224d1042ca112 |
|
MD5 | 1373f1d2b197bc07a80b917a137f6da2 |
|
BLAKE2b-256 | 27f61a4536ce9897c7a8e7b92c2d5651ac0f4e806032c7a837759ba4bbb5a85d |