Skip to main content

Explore OpenAI Gym environments.

Project description

Build Status Coverage Status Codacy Badge PyPI version

gym-demo

Explore OpenAI Gym environments

This package provides the gym-demo command, which allows you to explore the various Open AI gym environments installed on your system.

This allows you to get a quick overview of an environment before you start working on it. You will get information about the environments observation space, action space as well as the rewards you can expect to get and other available information.

gym-demo on YouTube

Installation

You can install OpenAI Gym and gym-demo using pip:

$ pip install gym[atari]
$ pip install gym-demo

Usage

Use gym-demo --help to display usage information and a list of environments installed in your Gym.

$ gym-demo --help

Start a demo of an environment to get information about its observation and action space and observe the rewards an agent gets during a random run.

$ gym-demo SpaceInvaders-ram-v4
Environment: SpaceInvaders-ram-v4

Observation Space: Box(128,)
Low values:
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
High values:
[255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
 255 255]

Action Space: Discrete(6)
Action meanings: ['NOOP', 'FIRE', 'RIGHT', 'LEFT', 'RIGHTFIRE', 'LEFTFIRE']


Running environment demonstration...
Unique environment information is output to standard out:
Reward: 0.0, Done: False, Info: {'ale.lives': 3}
Reward: 5.0, Done: False, Info: {'ale.lives': 3}
Reward: 0.0, Done: False, Info: {'ale.lives': 3}
Reward: 10.0, Done: False, Info: {'ale.lives': 3}
Reward: 0.0, Done: False, Info: {'ale.lives': 3}
Reward: 15.0, Done: False, Info: {'ale.lives': 3}
Reward: 0.0, Done: False, Info: {'ale.lives': 3}
Reward: 20.0, Done: False, Info: {'ale.lives': 3}
Reward: 0.0, Done: False, Info: {'ale.lives': 3}
Reward: 25.0, Done: False, Info: {'ale.lives': 3}
Reward: 0.0, Done: False, Info: {'ale.lives': 3}
Reward: 0.0, Done: False, Info: {'ale.lives': 2}
Reward: 30.0, Done: False, Info: {'ale.lives': 2}
Reward: 0.0, Done: False, Info: {'ale.lives': 2}
Reward: 0.0, Done: False, Info: {'ale.lives': 1}
Reward: 5.0, Done: False, Info: {'ale.lives': 1}
Reward: 0.0, Done: False, Info: {'ale.lives': 1}
Reward: 10.0, Done: False, Info: {'ale.lives': 1}
Reward: 0.0, Done: False, Info: {'ale.lives': 1}
Reward: 15.0, Done: False, Info: {'ale.lives': 1}
Reward: 0.0, Done: False, Info: {'ale.lives': 1}
Reward: 20.0, Done: False, Info: {'ale.lives': 1}
Reward: 0.0, Done: False, Info: {'ale.lives': 1}
Reward: 0.0, Done: True, Info: {'ale.lives': 0}

Get mode information about Open AI gym on their documentation website.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gym-demo-0.2.2.tar.gz (5.6 kB view details)

Uploaded Source

Built Distribution

gym_demo-0.2.2-py3-none-any.whl (6.4 kB view details)

Uploaded Python 3

File details

Details for the file gym-demo-0.2.2.tar.gz.

File metadata

  • Download URL: gym-demo-0.2.2.tar.gz
  • Upload date:
  • Size: 5.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.1

File hashes

Hashes for gym-demo-0.2.2.tar.gz
Algorithm Hash digest
SHA256 566304b24ed91f486720c7708b7f81e941339e26342153d223d05a29047633aa
MD5 44cd6668d028ff13491274bf7ec01e09
BLAKE2b-256 4c43983f8100ecf9da986cfa1d7c015248e649e0263bd2057d2403b19445b338

See more details on using hashes here.

File details

Details for the file gym_demo-0.2.2-py3-none-any.whl.

File metadata

  • Download URL: gym_demo-0.2.2-py3-none-any.whl
  • Upload date:
  • Size: 6.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.1

File hashes

Hashes for gym_demo-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 35823420431b0ef08d11225e31d893aa8ceeac94e0e71dfce1c3027ad8fe50a5
MD5 d6e184999a2e2d5e95df3dfcb051c730
BLAKE2b-256 3305562df31277275521690bb30f8af9cce72a2d4f59aca6c4c9a52194b8d2b8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page