gym-dmc is a gym wrapper around DeepMind Control Suite domains.
Project description
Link to other OpenAI Gym Plugins:
gym-sawyer
gym-toy-nav
Update Log
2024-03-25: Return np.Array from env.render() function
2022-01-13: Add space_dtype for overriding the dtype for the state and action spaces. Default to None, need to set to float/np.float32 for pytorch_SAC implementation.
2022-01-11: Added a env._get_obs() method to allow one to obtain the observation after resetting the environment. Version: ``v0.2.1``
Installation
The dm_control dependency relies on lower versions of setuptools and wheel. Downgrade to fix the installation error.
pip install setuptools==65.5.0
pip install wheel==0.38.4
pip install gym-dmc
How To Use
Usage pattern:
import gym
env = gym.make("dmc:Pendulum-swingup-v1")
For the full list of environments, you can print:
from dm_control.suite import ALL_TASKS
print(*ALL_TASKS, sep="\n")
# Out[2]: ('acrobot', 'swingup')
# ('acrobot', 'swingup_sparse')
...
We register all of these environments using the following pattern:
acrobot task “swingup_sparse” becomes dmc:Acrobot-swingup_sparse-v1
You can see the usage pattern in https://github.com/geyang/gym_dmc/blob/master/specs/test_gym_dmc.py:
env = gym.make('dmc:Walker-walk-v1', frame_skip=4, space_dtype=np.float32)
assert env.action_space.dtype is np.float32
assert env.observation_space.dtype is np.float32
env = gym.make('dmc:Walker-walk-v1', frame_skip=4)
assert env._max_episode_steps == 250
assert env.reset().shape == (24,)
env = gym.make('dmc:Walker-walk-v1', from_pixels=True, frame_skip=4)
assert env._max_episode_steps == 250
env = gym.make('dmc:Cartpole-balance-v1', from_pixels=True, frame_skip=8)
assert env._max_episode_steps == 125
assert env.reset().shape == (3, 84, 84)
env = gym.make('dmc:Cartpole-balance-v1', from_pixels=True, frame_skip=8, channels_first=False)
assert env._max_episode_steps == 125
assert env.reset().shape == (84, 84, 3)
env = gym.make('dmc:Cartpole-balance-v1', from_pixels=True, frame_skip=8, channels_first=False, gray_scale=True)
assert env._max_episode_steps == 125
assert env.reset().shape == (84, 84, 1)
Note, the ``max_episode_steps`` is calculated based on the ``frame_skip``. All DeepMind control domains terminate after 1000 simulation steps. So for frame_skip=4, the max_episode_steps should be 250.
Built with :heart: by Ge Yang
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
Hashes for gym_dmc-0.3.0rc1-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f9e9e59fa41a1e4ad46f1be38b8d6769532695d2c7cfe719bbb81842ad044cc8 |
|
MD5 | 7f4345fec77bdb60b979914acb01281d |
|
BLAKE2b-256 | 9166b59d721ae9e21132b395852a68112625ceb91c95b5b51abcd3081bc7421a |