Skip to main content

Create a machine learning model documentation

Project description

H2O Automated Model Documentation (AutoDoc) is a Python package that automatically creates model documentation for supervised learning models created in H2O-3 and Scikit-Learn. Automated documentation is used in production in H2O Driverless AI. This industry-leading capability is now available as a new commercial module.

Key Capabilities

  • Distributed Automatic document generation in Microsoft Word (docx) or Markup (.md) formats.

  • Out-of-the-box documentation template included

  • Template customization available to fit with your organization’s standards and requirements

  • Support for models generated in H2O-3 and Scikit-Learn

  • Support for H2O-3: Deep Learning, Random Forest, GLM, Gradient Boosted Machines, Stacked Ensembles, and XGBoost models

Please send feedback to help improve the client and documentation to sales@h2o.ai.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

h2o_autodoc-1.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.3 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

h2o_autodoc-1.1.0-cp310-cp310-macosx_10_9_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

h2o_autodoc-1.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

h2o_autodoc-1.1.0-cp39-cp39-macosx_10_9_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

h2o_autodoc-1.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.6 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

h2o_autodoc-1.1.0-cp38-cp38-macosx_10_9_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

h2o_autodoc-1.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.6 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

h2o_autodoc-1.1.0-cp37-cp37m-macosx_10_9_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

File details

Details for the file h2o_autodoc-1.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for h2o_autodoc-1.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b7a0d2617ccf4b24a07de1fd03a7a1882e3333e22a9070da785cb232687c4edf
MD5 738c8ac1dbc14f058fe817a8a97e7033
BLAKE2b-256 3dc99096f1f74e8298a82b14c9990690e68fa80a868e7f0f11805e89be64a3a2

See more details on using hashes here.

File details

Details for the file h2o_autodoc-1.1.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for h2o_autodoc-1.1.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9bc68dce72b77edf7bc588b508ee2492f3b82dae849f9e26dd1da5c9c0a0b36b
MD5 4bbe1ffb24fcaee947b346bc42090c16
BLAKE2b-256 cd17d88915b7a3882ca640203b6a0bdedf5ebf18ddd28ba03f510789d2c6ef42

See more details on using hashes here.

File details

Details for the file h2o_autodoc-1.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for h2o_autodoc-1.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 739ac94b879e5ba3bcec511289232f48b41332b094ebdbc14ba88093448705f7
MD5 62639a74e8e4d847da2875c46f191928
BLAKE2b-256 8a6eb3c78fe2a0f732679a81a0c3ae79fcb9fe627623349a696d00c5969a07db

See more details on using hashes here.

File details

Details for the file h2o_autodoc-1.1.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for h2o_autodoc-1.1.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 30d79463166e851227fe560fc135fe0a00414fb733a495dfdf59033f30fb26fa
MD5 0f1c27d0822baa0098961468063a9140
BLAKE2b-256 219833cdd77359b1d335821b709ae664632401ce2e4aee43b3c8dd3d21d862da

See more details on using hashes here.

File details

Details for the file h2o_autodoc-1.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for h2o_autodoc-1.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6548b70a63fc61438865597241646925887b935b41077e856e404dcea4b6753c
MD5 3a98bb83d5881124f5b3a897a7b878ff
BLAKE2b-256 90adeef4e842f9974bcd397ca79a810542f8e900b1db8b3faa8cd0e77e0c09e4

See more details on using hashes here.

File details

Details for the file h2o_autodoc-1.1.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for h2o_autodoc-1.1.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3ce98516a8c9d51da01b5175a5ba68e30ba63e958e86616d82f67ffaa224f2f0
MD5 c2cabe6c25d89155492d901d63d65988
BLAKE2b-256 87dab71f44e729a2f6d0783291e98843e08210b46fe861983630d5ea1483a9ca

See more details on using hashes here.

File details

Details for the file h2o_autodoc-1.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for h2o_autodoc-1.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c912d3517804464663f61d86f5490d7f3c69998cc4c2283f51591ad160d41efb
MD5 3ff49ca8e171ac836eb83142493872b9
BLAKE2b-256 8e5688117dc7c2a3533b3da0e64b81ec0374bf109e7c626b45932f9ec65dd0fb

See more details on using hashes here.

File details

Details for the file h2o_autodoc-1.1.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for h2o_autodoc-1.1.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a64f4c65e49cea0b799471da5374d428b905b382252c726de049e4cf1d4761dc
MD5 21ea3196f761d914929be7f0916b457c
BLAKE2b-256 f726105c1c6b4a29b951b8d68ef53fc400cffdeff0ff2d72469e48b918b4fb56

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page