Skip to main content

Python interface for H3DS dataset

Project description

H3DS Dataset

PyPI

This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction

Access

The H3DS dataset is only available for non-commercial research purposes. To request access, please fill in the contact form with your academic email. Your application will be reviewed and, after acceptance, you will recieve a H3DS_ACCESS_TOKEN together with the license and terms of use.

Setup

The simplest way to use the H3DS dataset is by installing it as a pip package:

pip install h3ds

Accessing H3DS data

You can start using H3DS in your project with a few lines of code

from h3ds.dataset import H3DS

h3ds = H3DS(path='local/path/to/h3ds')
h3ds.download(token=H3DS_ACCESS_TOKEN)
mesh, images, masks, cameras = h3ds.load_scene(scene_id='1b2a8613401e42a8')

To list the available scenes, simply use:

scenes = h3ds.scenes() # returns all the scenes ['1b2a8613401e42a8', ...]
scenes = h3ds.scenes(tags={'h3d-net'}) # returns the scenes used in H3D-Net paper

In order to reproduce the results from H3D-Net, we provide default views configurations for each scene:

views_configs = h3ds.default_views_configs(scene_id='1b2a8613401e42a8') # '3', '4', '8', '16' and '32'
mesh, images, masks, cameras = h3ds.load_scene(scene_id='1b2a8613401e42a8', views_config_id='3')

This will load a scene with a mesh, 3 images, 3 masks and 3 cameras.

Evaluation

We provide a method for evaluating your reconstructions with a single line of code

mesh_pred, landmarks_pred = my_rec_method(images, masks, cameras)
chamfer, _, _, _ = h3ds.evaluate_scene('1b2a8613401e42a8', mesh_pred, landmarks_pred)

The landmarks_pred is an optional dictionary containing landmarks used for a coarse alignment between the predicted mesh and the ground truth mesh. Please, check this description of the landmarks positions.

For more insights, check the examples provided.

Comparison against H3D-Net

The results reported in the H3D-Net paper (Table 2) slightly differ from the ones obtained using the evaluation code provided in this repository. This is due to minor implementation changes in the alignment process and in the cutting of the regions. In the following table we provide the results obtained using the evaluation code from this repository. We encourage everyone to use the evaluate_scene method provided in this repository to report comparable results accross different works.

Method \ Views 3 4 8 16 32
IDR 2.79 / 14.58 1.88 / 8.99 1.83 / 8.34 1.31 / 6.37 1.25 / 5.71
H3D-Net 1.33 / 10.52 1.35 / 7.71 1.18 / 6.45 1.05 / 5.36 1.03 / 5.25

The numbers from the table can be obtained by running the evaluation script from the examples folder, which uses the 3D reconstructions from the paper to compute the metrics.

Terms of use

By using the H3DS Dataset you agree with the following terms:

  1. The data must be used for non-commercial research and/or education purposes only.
  2. You agree not to copy, sell, trade, or exploit the data for any commercial purposes.
  3. If you will be publishing any work using this dataset, please cite the original paper.

Citation

@article{ramon2021h3d,
  title={H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction},
  author={Ramon, Eduard and Triginer, Gil and Escur, Janna and Pumarola, Albert and Garcia, Jaime and Giro-i-Nieto, Xavier and Moreno-Noguer, Francesc},
  journal={arXiv preprint arXiv:2107.12512},
  year={2021}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

h3ds-0.3.3.tar.gz (17.0 kB view details)

Uploaded Source

Built Distribution

h3ds-0.3.3-py3-none-any.whl (16.6 kB view details)

Uploaded Python 3

File details

Details for the file h3ds-0.3.3.tar.gz.

File metadata

  • Download URL: h3ds-0.3.3.tar.gz
  • Upload date:
  • Size: 17.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.6.7

File hashes

Hashes for h3ds-0.3.3.tar.gz
Algorithm Hash digest
SHA256 87cf626f4dd997d0cf1c8d98834064a7562acb425d22d9e0135baa0191c7fb37
MD5 0ee3b79efb89c7b104b825badd1ec600
BLAKE2b-256 0feb0b88cb4c78b7787088322b2852f98db0a8e32ac0fbe34ed0e14fdce6681e

See more details on using hashes here.

File details

Details for the file h3ds-0.3.3-py3-none-any.whl.

File metadata

  • Download URL: h3ds-0.3.3-py3-none-any.whl
  • Upload date:
  • Size: 16.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.6.7

File hashes

Hashes for h3ds-0.3.3-py3-none-any.whl
Algorithm Hash digest
SHA256 dda9707a0a120fb3ffed9ecc03adfaeec87ca389243ceb9195baca0079153d5f
MD5 903ea09e8a5de45752cea8c63b49f91d
BLAKE2b-256 71bc3d9cc50c70a478a55764b41af6ce60c9a3c2c68bbadeae31ab0c59e93bb4

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page