Skip to main content

Integration of H3 and GeoPandas

Project description

H3 Logo

 

H3-Pandas ⬢ 🐼

Integrates H3 with GeoPandas and Pandas. image Binder image Documentation Status

 


Try it out


example usage

Installation

pip

image

pip install h3pandas

conda

conda-version Anaconda-Server Badge

conda install -c conda-forge h3pandas

Usage examples

H3 API

h3pandas automatically applies H3 functions to both Pandas Dataframes and GeoPandas Geodataframes

# Prepare data
>>> import pandas as pd
>>> import h3pandas
>>> df = pd.DataFrame({'lat': [50, 51], 'lng': [14, 15]})
>>> resolution = 10
>>> df = df.h3.geo_to_h3(resolution)
>>> df

| h3_10           |   lat |   lng |
|:----------------|------:|------:|
| 8a1e30973807fff |    50 |    14 |
| 8a1e2659c2c7fff |    51 |    15 |

>>> df = df.h3.h3_to_geo_boundary()
>>> df

| h3_10           |   lat |   lng | geometry        |
|:----------------|------:|------:|:----------------|
| 8a1e30973807fff |    50 |    14 | POLYGON ((...)) |
| 8a1e2659c2c7fff |    51 |    15 | POLYGON ((...)) |

H3-Pandas Extended API

h3pandas also provides some extended functionality out-of-the-box, often simplifying common workflows into a single command.

# Set up data
>>> import numpy as np
>>> import pandas as pd
>>> np.random.seed(1729)
>>> df = pd.DataFrame({
>>>   'lat': np.random.uniform(50, 51, 100),
>>>   'lng': np.random.uniform(14, 15, 100),
>>>   'value': np.random.poisson(100, 100)})
>>> })
# Aggregate values by their location and sum
>>> df = df.h3.geo_to_h3_aggregate(3)
>>> df

| h3_03           |   value | geometry        |
|:----------------|--------:|:----------------|
| 831e30fffffffff |     102 | POLYGON ((...)) |
| 831e34fffffffff |     189 | POLYGON ((...)) |
| 831e35fffffffff |    8744 | POLYGON ((...)) |
| 831f1bfffffffff |    1040 | POLYGON ((...)) |

# Aggregate to a lower H3 resolution
>>> df.h3.h3_to_parent_aggregate(2)

| h3_02           |   value | geometry        |
|:----------------|--------:|:----------------|
| 821e37fffffffff |    9035 | POLYGON ((...)) |
| 821f1ffffffffff |    1040 | POLYGON ((...)) |

Further examples

For more examples, see the example notebooks.

API

For a full API documentation and more usage examples, see the documentation.

Development

H3-Pandas cover the basics of the H3 API, but there are still many possible improvements.

Any suggestions and contributions are very welcome!

In particular, the next steps are:

  • Improvements & stability of the "Extended API", e.g. k_ring_smoothing.

Additional possible directions

See issues for more.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

h3pandas-0.2.6.tar.gz (138.4 kB view details)

Uploaded Source

File details

Details for the file h3pandas-0.2.6.tar.gz.

File metadata

  • Download URL: h3pandas-0.2.6.tar.gz
  • Upload date:
  • Size: 138.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for h3pandas-0.2.6.tar.gz
Algorithm Hash digest
SHA256 eda3430a88e81c03791c6f7e393d3a3af797b6f0b69d7d5496f35e35ab2557d0
MD5 c323abda75cb152de868195e2c9b627c
BLAKE2b-256 cbfc28b7a2345f17c25d238dfcb71cd5afb78788408dd2395bc3660d78d60e4e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page