Skip to main content

Scipy sparse matrices in HDF5. Sparse COO tensors in HDF5

Project description

https://img.shields.io/travis/tvandera/h5sparse/master.svg https://img.shields.io/pypi/v/h5sparse-tensor.svg https://img.shields.io/pypi/l/h5sparse-tensor.svg

Scipy sparse matrix in HDF5.

Installation

pip install h5sparse-tensor

Testing

  • for single environment:

    python setup.py test
  • for all environments:

    tox

Examples

Create dataset

In [1]: import scipy.sparse as ss
   ...: import h5sparse
   ...: import numpy as np
   ...:

In [2]: sparse_matrix = ss.csr_matrix([[0, 1, 0],
   ...:                                [0, 0, 1],
   ...:                                [0, 0, 0],
   ...:                                [1, 1, 0]],
   ...:                               dtype=np.float64)

In [3]: # create dataset from scipy sparse matrix
   ...: with h5sparse.File("test.h5") as h5f:
   ...:     h5f.create_dataset('sparse/matrix', data=sparse_matrix)

In [4]: # you can also create dataset from another dataset
   ...: with h5sparse.File("test.h5") as h5f:
   ...:     h5f.create_dataset('sparse/matrix2', data=h5f['sparse/matrix'])

In [5]: # you can also create dataset using the formats that original h5py accepts
   ...: with h5sparse.File("test.h5") as h5f:
   ...:     h5f.create_dataset('sparse/matrix3', data=[1,2,3])

Read dataset

In [6]: h5f = h5sparse.File("test.h5")

In [7]: h5f['sparse/matrix'][1:3]
Out[7]:
<2x3 sparse matrix of type '<class 'numpy.float64'>'
        with 1 stored elements in Compressed Sparse Row format>

In [8]: h5f['sparse/matrix'][1:3].toarray()
Out[8]:
array([[ 0.,  0.,  1.],
       [ 0.,  0.,  0.]])

In [9]: h5f['sparse']['matrix'][1:3].toarray()
Out[9]:
array([[ 0.,  0.,  1.],
       [ 0.,  0.,  0.]])

In [10]: h5f['sparse']['matrix'][2:].toarray()
Out[10]:
array([[ 0.,  0.,  0.],
       [ 1.,  1.,  0.]])

In [11]: h5f['sparse']['matrix'][:2].toarray()
Out[11]:
array([[ 0.,  1.,  0.],
       [ 0.,  0.,  1.]])

In [12]: h5f['sparse']['matrix'][-2:].toarray()
Out[12]:
array([[ 0.,  0.,  0.],
       [ 1.,  1.,  0.]])

In [13]: h5f['sparse']['matrix'][:-2].toarray()
Out[13]:
array([[ 0.,  1.,  0.],
       [ 0.,  0.,  1.]])

In [14]: h5f['sparse']['matrix'][()].toarray()
Out[14]:
array([[ 0.,  1.,  0.],
       [ 0.,  0.,  1.],
       [ 0.,  0.,  0.],
       [ 1.,  1.,  0.]])

In [15]: import h5py

In [16]: h5py_h5f = h5py.File("test.h5")

In [17]: h5sparse.Group(h5py_h5f.id)['sparse/matrix'][()]
Out[17]:
<4x3 sparse matrix of type '<class 'numpy.float64'>'
        with 4 stored elements in Compressed Sparse Row format>

In [18]: h5sparse.Group(h5py_h5f['sparse'].id)['matrix'][()]
Out[18]:
<4x3 sparse matrix of type '<class 'numpy.float64'>'
        with 4 stored elements in Compressed Sparse Row format>

In [19]: h5sparse.Dataset(h5py_h5f['sparse/matrix'])[()]
Out[19]:
<4x3 sparse matrix of type '<class 'numpy.float64'>'
        with 4 stored elements in Compressed Sparse Row format>

Append dataset

In [20]: to_append = ss.csr_matrix([[0, 1, 1],
    ...:                            [1, 0, 0]],
    ...:                           dtype=np.float64)

In [21]: h5f.create_dataset('matrix', data=sparse_matrix, chunks=(100000,),
    ...:                    maxshape=(None,))

In [22]: h5f['matrix'].append(to_append)

In [23]: h5f['matrix'][()]
Out[23]:
<6x3 sparse matrix of type '<class 'numpy.float64'>'
        with 7 stored elements in Compressed Sparse Row format>

In [24]: h5f['matrix'][()].toarray()
Out[24]:
array([[ 0.,  1.,  0.],
       [ 0.,  0.,  1.],
       [ 0.,  0.,  0.],
       [ 1.,  1.,  0.],
       [ 0.,  1.,  1.],
       [ 1.,  0.,  0.]])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

h5sparse_tensor-0.2.3.tar.gz (6.7 kB view details)

Uploaded Source

Built Distribution

h5sparse_tensor-0.2.3-py2.py3-none-any.whl (5.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file h5sparse_tensor-0.2.3.tar.gz.

File metadata

  • Download URL: h5sparse_tensor-0.2.3.tar.gz
  • Upload date:
  • Size: 6.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.14

File hashes

Hashes for h5sparse_tensor-0.2.3.tar.gz
Algorithm Hash digest
SHA256 5377f48def4860fa05973b4fe40587d1392d9926516dfeb1b8e168cc80c4355e
MD5 a9d40bd446c71440049f733418a75ab6
BLAKE2b-256 bddee769428300929ec328523b5ead34661471dfc3888c399360c4b58e210a56

See more details on using hashes here.

File details

Details for the file h5sparse_tensor-0.2.3-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for h5sparse_tensor-0.2.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 1a599bd464ec1d31527bc63dd6371b567e99a3127a2ff21da44eda2519f662d5
MD5 fe760902e5255df48ef244efe323efae
BLAKE2b-256 db7edca24a4a18dd2ef445174894d287cb8ae914d16d42c115558d31861a32cd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page