Skip to main content

Scipy sparse matrix in HDF5.

Project description

Please visit the Github repository for more information.

h5sparse

Scipy sparse matrix in HDF5.

Installation

pip install h5sparse

Testing

  • for single environment:

    python setup.py test
    
  • for all environments:

    tox
    

Examples

Create dataset

In [1]: import scipy.sparse as ss
   ...: import h5sparse
   ...: import numpy as np
   ...:

In [2]: sparse_matrix = ss.csr_matrix([[0, 1, 0],
   ...:                                [0, 0, 1],
   ...:                                [0, 0, 0],
   ...:                                [1, 1, 0]],
   ...:                               dtype=np.float64)

In [3]: # create dataset from scipy sparse matrix
   ...: with h5sparse.File("test.h5") as h5f:
   ...:     h5f.create_dataset('sparse/matrix', data=sparse_matrix)

In [4]: # you can also create dataset from another dataset
   ...: with h5sparse.File("test.h5") as h5f:
   ...:     h5f.create_dataset('sparse/matrix2', data=h5f['sparse/matrix'])

Read dataset

In [5]: h5f = h5sparse.File("test.h5")

In [6]: h5f['sparse/matrix'][1:3]
Out[6]:
<2x3 sparse matrix of type '<class 'numpy.float64'>'
        with 1 stored elements in Compressed Sparse Row format>

In [7]: h5f['sparse/matrix'][1:3].toarray()
Out[7]:
array([[ 0.,  0.,  1.],
       [ 0.,  0.,  0.]])

In [8]: h5f['sparse']['matrix'][1:3].toarray()
Out[8]:
array([[ 0.,  0.,  1.],
       [ 0.,  0.,  0.]])

In [9]: h5f['sparse']['matrix'][2:].toarray()
Out[9]:
array([[ 0.,  0.,  0.],
       [ 1.,  1.,  0.]])

In [10]: h5f['sparse']['matrix'][:2].toarray()
Out[10]:
array([[ 0.,  1.,  0.],
       [ 0.,  0.,  1.]])

In [11]: h5f['sparse']['matrix'][-2:].toarray()
Out[11]:
array([[ 0.,  0.,  0.],
       [ 1.,  1.,  0.]])

In [12]: h5f['sparse']['matrix'][:-2].toarray()
Out[12]:
array([[ 0.,  1.,  0.],
       [ 0.,  0.,  1.]])

In [13]: h5f['sparse']['matrix'].value.toarray()
Out[13]:
array([[ 0.,  1.,  0.],
       [ 0.,  0.,  1.],
       [ 0.,  0.,  0.],
       [ 1.,  1.,  0.]])

In [15]: import h5py

In [16]: h5f = h5py.File("test.h5")

In [18]: h5sparse.Group(h5f)['sparse/matrix'].value
Out[18]:
<4x3 sparse matrix of type '<class 'numpy.float64'>'
        with 4 stored elements in Compressed Sparse Row format>

In [19]: h5sparse.Group(h5f['sparse'])['matrix'].value
Out[19]:
<4x3 sparse matrix of type '<class 'numpy.float64'>'
        with 4 stored elements in Compressed Sparse Row format>

In [21]: h5sparse.Dataset(h5f['sparse/matrix']).value
Out[21]:
<4x3 sparse matrix of type '<class 'numpy.float64'>'
        with 4 stored elements in Compressed Sparse Row format>

Append dataset

In [22]: to_append = ss.csr_matrix([[0, 1, 1],
    ...:                            [1, 0, 0]],
    ...:                           dtype=np.float64)

In [23]: h5f.create_dataset('matrix', data=sparse_matrix, chunks=(100000,),
    ...:                    maxshape=(None,))

In [24]: h5f['matrix'].append(to_append)

In [25]: h5f['matrix'].value
Out[25]:
<6x3 sparse matrix of type '<class 'numpy.float64'>'
        with 7 stored elements in Compressed Sparse Row format>

In [26]: h5f['matrix'].value.toarray()
Out[26]:
array([[ 0.,  1.,  0.],
       [ 0.,  0.,  1.],
       [ 0.,  0.,  0.],
       [ 1.,  1.,  0.],
       [ 0.,  1.,  1.],
       [ 1.,  0.,  0.]])

Version scheme

We use semantic versioning.

Project details


Release history Release notifications

This version
History Node

0.0.4

History Node

0.0.3

History Node

0.0.2

History Node

0.0.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
h5sparse-0.0.4-py2.py3-none-any.whl (6.7 kB) Copy SHA256 hash SHA256 Wheel py2.py3 Feb 7, 2017
h5sparse-0.0.4.tar.gz (4.6 kB) Copy SHA256 hash SHA256 Source None Feb 7, 2017

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page