Skip to main content

Pytorch implementation of the forward and inverse discrete wavelet transform using Haar Wavelets.

Project description

haar_pytorch: Pytorch implementation of forward and inverse Haar Wavelets 2D

A simple library that implements differentiable forward and inverse Haar Wavelets.

Install the latest version

pip install --upgrade git+https://github.com/bes-dev/haar_pytorch.git

Example

import torch
from haar_pytorch import HaarForward, HaarInverse

haar = HaarForward()
ihaar = HaarInverse()

img = torch.randn(5, 4, 64, 64)
wavelets = haar(img)
img_reconstructed = ihaar(wavelets)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

haar_pytorch-2021.11.16.0.tar.gz (6.4 kB view details)

Uploaded Source

File details

Details for the file haar_pytorch-2021.11.16.0.tar.gz.

File metadata

  • Download URL: haar_pytorch-2021.11.16.0.tar.gz
  • Upload date:
  • Size: 6.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for haar_pytorch-2021.11.16.0.tar.gz
Algorithm Hash digest
SHA256 978a3e51fd5fc30f5a157347f344d79d76330ea2921c626031c8c3440b85094e
MD5 18e3de1de40155f9100556909bfd5ae5
BLAKE2b-256 8f11dd44d537d8766af2c17dafd66794100fa516eab7dcd31c8af6ebe27a640a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page