Pytorch implementation of the forward and inverse discrete wavelet transform using Haar Wavelets.
Project description
haar_pytorch: Pytorch implementation of forward and inverse Haar Wavelets 2D
A simple library that implements differentiable forward and inverse Haar Wavelets.
Install the latest version
pip install --upgrade git+https://github.com/bes-dev/haar_pytorch.git
Example
import torch
from haar_pytorch import HaarForward, HaarInverse
haar = HaarForward()
ihaar = HaarInverse()
img = torch.randn(5, 4, 64, 64)
wavelets = haar(img)
img_reconstructed = ihaar(wavelets)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file haar_pytorch-2021.11.16.0.tar.gz
.
File metadata
- Download URL: haar_pytorch-2021.11.16.0.tar.gz
- Upload date:
- Size: 6.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 978a3e51fd5fc30f5a157347f344d79d76330ea2921c626031c8c3440b85094e |
|
MD5 | 18e3de1de40155f9100556909bfd5ae5 |
|
BLAKE2b-256 | 8f11dd44d537d8766af2c17dafd66794100fa516eab7dcd31c8af6ebe27a640a |