Skip to main content

Dataloader using Habana hardware media pipeline

Project description

Habana Media Python package

habana_media_loader is a package designed for easy integration of media processing on Gaudi2. Main entry point (Python import) is habana_frameworks.mediapipe module that contains all the necessary functions to work with Gaudi2.

Structure

Properly built wheel contains:

  • habana_frameworks python namespace (with all the folder structure inside).
  • mediapipe folder catering media execution on device and medialoader folder catering pre-built mediapipe for tensorflow & pytorch frameworks.
  • proper licensing.

Media package (habana_frameworks.mediapipe and habana_frameworks.medialoaders)

First part of media package contains media pipe which is responsible for media processing on device.

Following are the steps to create mediapipe

  • Create a class derived from habana_frameworks.mediapipe super class.
  • In the class constructor initialize super class.
  • Create nodes required for execution along with it's parameters.
  • Define a method definegraph() which defines the data flow between nodes created in constructor.

Following are the steps to execute a standalone mediapipe

  • Instantiate an object of defined mediapipe class.
  • Build the mediapipe by executing build() method of mediapipe object.
  • Initialize the iterator by calling iter_init() method of mediapipe object.
  • To produce one batch of dataset, execute run() method of mediapipe object. Each run() method call executes and produces one batch of device tensors.
  • To view or manipulate tensors on host as_cpu() method of device tensor object can be called, which yields host tensor object.
  • For numpy manipulation as_nparray() method of host tensor object can be called to get a numpy host array.

Example:

from habana_frameworks.mediapipe import fn
from habana_frameworks.mediapipe.mediapipe import MediaPipe
from habana_frameworks.mediapipe.media_types import imgtype as it
from habana_frameworks.mediapipe.media_types import dtype as dt
from habana_frameworks.mediapipe.media_types import layout as lt
import time

class myMediaPipe(MediaPipe):
    def __init__(self, device, queue_depth, batch_size, channel, height, width):
        super(
            myMediaPipe,
            self).__init__(
            device,
            queue_depth,
            batch_size,
            channel,
            height,
            width,
            self.__class__.__name__,
            layout=lt.NHWC)
        mediapipe_seed = int(time.time_ns() % (2**31 - 1))
        # create reader node and setting it's params
        self.input = fn.ReadImageDatasetFromDir(dir="/path/to/jpeg/dir/",
                                                format="JPEG",
                                                shuffle=True,
                                                seed=mediapipe_seed)
        # create decoder node and set it's params
        self.decode = fn.ImageDecoder(output_format=it.RGB_P,
                                      resize=[224, 224])

        # create transpose node and set it's params
        self.transpose = fn.Transpose(permutation=[2, 0, 1, 3], tensorDim=4)

    def definegraph(self):
        # define actual data flow of nodes
        jpegs, data = self.input()
        images = self.decode(jpegs)
        images = self.transpose(images)
        # return output nodes of the graph
        return images, data


# test specific params
batch_size = 4
img_width = 224
img_height = 224
channels = 3
queue_depth = 3
iterations = 5

# instantiating defined class
pipe = myMediaPipe("hpu", queue_depth, batch_size,
                   channels, img_height, img_width)
# build the pipe
pipe.build()
# initialize iterator
pipe.iter_init()

batch_count = 0
while(batch_count < iterations):
    try:
        # exectute and produce one batch of dataset.
        images, labels = pipe.run()
        # images and labels are device tensors.
    except StopIteration:
        print("stop iteration")
        break
    # as cpu will bring the device data to host and produce host tensors
    # as_nparray will convert host tensors to numpy array.
    images = images.as_cpu().as_nparray()
    labels = labels.as_cpu().as_nparray()
    batch_count = batch_count + 1

Second part of media package contains pre built media pipe for tensorflow and pytorch.

tensorflow folder contains media_resnet_pipe containing resnet pipe for tensflow graph

Following are the steps to use pre built mediapipe for tensorflow

  • Import ResnetPipe from habana_frameworks.medialoaders.tensorflow.media_resnet_pipe
  • Instantiate an object of ResnetPipe with following parameters
    • device name: hpu
    • queue_depth: queue depth for media processing.
    • batch_size: mediapipe output batch size.
    • height: mediapipe output image height.
    • width: mediapipe output image width.
    • is_training: if is training pipe or validation pipe
    • data_dir: jpeg data directory.
    • out_dtype: output datatype of image.
    • num_slices: number of slices to be done of dataset.
    • slice_index: slice index to be used for this instance of execution.
  • Instantiate an object of HabanaDataset which is derived from tensorflow dataset with following parameters
    • output_shapes: list of output shapes of the dataset.
    • output_types: list of output datatype of the dataset.
    • pipeline: media pipeline object.
  • Above dataset can be used for dataset iterations.

Example:

from habana_frameworks.medialoaders.tensorflow.media_resnet_pipe import ResnetPipe
from habana_frameworks.tensorflow.media.habana_dataset import HabanaDataset

# network specific parameters
batch_size = 256
num_channels= 3
img_size = 224
is_training = True
dir_path = '/jpeg/path/'
media_dtype = 'bfloat16'
num_slices = 1
slice_index = 0
queue_depth = 3
tf_media_dtype = tf.bfloat16
tf_meta_dtype = tf.float32

#pre defined mediapipe from medialoaders
pipe = ResnetPipe("hpu", queue_depth, batch_size, num_channels,
                  img_size, img_size, is_training,
                  dir_path, media_dtype, num_slices, slice_index)

# tensorflow predefine habanadataset class
dataset = HabanaDataset(output_shapes=[(batch_size,
                                        img_size,
                                        img_size,
                                        num_channels),
                                       (batch_size,)],
                        output_types=[tf_media_dtype, tf_meta_dtype], pipeline=pipe)
# above dataset object is tf dataset object which is iteratable and can be fed to training node.
torch folder contains media_dataloader_mediapipe containing HPUMediaPipe which can be used to create resnet and SSD media pipe for pytorch

Following are the steps to use HPUMediaPipe for pytorch

  • Import HPUMediaPipe from habana_frameworks.medialoaders.torch.media_dataloader_mediapipe
  • Instantiate an object of HPUMediaPipe with following parameters:
    • a_torch_transforms: transforms to be applied on mediapipe.
    • a_root: directory path from which to load the images.
    • a_annotation_file: path from which to load annotation file for SSD.
    • a_batch_size: mediapipe output batch size.
    • a_shuffle: whether images have to be shuffled. <True/False>
    • a_drop_last: whether to drop the last incomplete batch or round up.<True/False>
    • a_prefetch_count: queue depth for media processing.
    • a_num_instances: number of devices.
    • a_instance_id: instance id of current device.
    • a_model_ssd: whether mediapipe is to be created for SSD. <True/False>
    • a_device: media device to run mediapipe on.
  • Separate HPUMediaPipe objects can be created for training and validation.
  • Instantiate an object of HPUResnetPytorchIterator (for resnet) or HPUSsdPytorchIterator (for SSD) with following parameters
    • mediapipe: media pipe object.

Example for resnet media pipe:

from habana_frameworks.medialoaders.torch.media_dataloader_mediapipe import HPUMediaPipe
from habana_frameworks.mediapipe.plugins.iterator_pytorch import HPUResnetPytorchIterator

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])
torch_transforms = transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            normalize,
        ])

root = "/JPEG/path"
batch_size = 256
shuffle = True
drop_last = False
prefetch_factor = 3
num_instances = 1
instance_id = 0

pipeline = HPUMediaPipe(a_torch_transforms=torch_transforms, a_root=root, a_batch_size=batch_size,
                        a_shuffle=shuffle, a_drop_last=drop_last, a_prefetch_count=prefetch_factor,
                        a_num_instances=num_instances, a_instance_id=instance_id, a_device="hpu")

iterator = HPUResnetPytorchIterator(mediapipe=pipeline)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

habana_media_loader-1.18.0.524-py3-none-any.whl (178.8 kB view details)

Uploaded Python 3

File details

Details for the file habana_media_loader-1.18.0.524-py3-none-any.whl.

File metadata

File hashes

Hashes for habana_media_loader-1.18.0.524-py3-none-any.whl
Algorithm Hash digest
SHA256 9cf0bf4ad0e2a30e0623f498deba00c0b1bcf0c63643002405b9723577b4c14e
MD5 f600b7df6d20f807f20e8f7c606879b2
BLAKE2b-256 45257285e677ca91146fe54f45f9f7fe287b68ab57b069a349e8cebf6b9da81e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page