Skip to main content

No project description provided

Project description

hakkero-dataloader

A general dataloader build on top of Pytorch Dataloader.

1. How to use

1.1 Build Index

Install pip install hakkero-dataloader and run the following command to build index.

hakkero -h
usage: hakkero [-h] --filename FILENAME [--output OUTPUT]

build index for dataset

options:
  -h, --help           show this help message and exit
  --filename FILENAME  full filename of jsonl file
  --output OUTPUT      output path for saving data.jsonl and index.h5

1.2 Use In Training

from hakkero.dataset import get_dataset

# pretrain or sft
from hakkero.dataset import PadLoader
from hakkero.dataset import UnpadLoader

# preference
from hakkero.dataset import PreferencePadLoader
from hakkero.dataset import PreferenceUnpadLoader

dp_world_size, dp_rank = 1, 0
tokenizer = ...
batch_size = 4
max_length = 4096
n_workers = 2

dataset = get_dataset(
    config="/path/to/dataset",
    tokenizer=tokenizer,
    num_epochs=-1,
    max_length=max_length,
    homogeneous=True,
    seed=9527,
    rank=dp_rank,
    world_size=dp_world_size,
    n_workers=n_workers,
    # segment and tokenize strategy or set them in `config` and let strategy_segment=None and strategy_tokenize=None: 
    st_segment="naive",
    st_tokenize="legacy",
    # add bos/eos token for legacy tokenize strategy
    add_bos_token=True,
    add_eos_token=True,
)

dataloader = UnpadLoader(dataset, max_total_length=batch_size * max_length)
prefetcher = dataloader.prefetch(n_workers)

for step, batch in enumerate(prefetcher, start=0):
    print(batch)

example of config:

{
    "hermes25_1":
    {
        "group": "en",
        "name": "hermes25_1",
        "epoch": 1,
        "path": "hermes25",
        "strategy":
        {
            "st_segment": "integrous",
            "st_tokenize": "hg"
        },
        "weight": 0.5
    },
    "hermes25_2":
    {
        "group": "en",
        "name": "hermes25_1",
        "epoch": 1,
        "path": "hermes25",
        "strategy":
        {
            "st_segment": "integrous",
            "st_tokenize": "hg"
        },
        "weight": 0.5
    }
}

2. Supported Strategies

See segmentation.py and tokenization.py for more details.

2.1 Segmentation Strategies

  • integrous: discard sample that is too long, exceed max_length
  • concat: split long sample, concat it with previous segment, shuffle all segments
    • not support preference data.
  • naive: split long sample with random length, shuffle all segments
    • not support preference data.
  • unbiased: split long sample exceed max_length with random length, shuffle all segments.
    • not support preference data.

2.2 Tokenization Strategies

  • legacy: \n\n as delimiter to join text and use tokenizer.encode to encode the input.

    • format of input data

      {
        "uid": "xxx",
        "data":
        {
            "title": "xxx",
            "summary": "xxx",
            "abstract": "xxx",
            "text": "xxx",
            "question": "xxx",
            "answer": "xxx",
            "code": "xxx",
            "label": "xxx"
        }
      }
      
      • All fields except label are stripped and joined with "\n\n" as the context.
      • label is the target to learn for finetuning (pretrain data should not have the label field).
      • See func legacy in tokenization.py for more details.
    • extra parameters: add_bos_token, add_eos_token

  • hg: huggingface message data, use tokenizer.apply_chat_template to encode the input.

    • format of input data

      {
        "uid": "xx",
        "data": [
          {"role": "user", "content": "xxx"},
          {"role": "assistant", "content": "xxx"},
           ...
        ]
      }
      

      See func huggingface_message in tokenization.py for more details.

  • chatml: chat message data, use chatml to encode the input.

    • format of input data

      {
        "uid": "xx",
        "data": [
          {"role": "user", "content": "xxx"},
          {"role": "assistant", "content": "xxx"},
           ...
        ]
      }
      

      See func chatml_message in tokenization.py for more details.

  • hg_preference: preference data, use tokenizer.apply_chat_template to encode the input.

    • format of input data

      {
        "uid": "xx",
        "data": {
          "context": [
            {"role": "user", "content": "xxx"},
            {"role": "assistant", "content": "xxx"},
            ...
            {"role": "user", "content": "xxx"}
          ],
          "chosen": "chosen response",
          "rejected": "rejected response"
        }
      }
      

      See func huggingface_preference in tokenization.py for more details.

  • chatml_preference: preference data, use chatml to encode the input.

    • format of input data

      {
        "uid": "xx",
        "data": {
          "context": [
            {"role": "user", "content": "xxx"},
            {"role": "assistant", "content": "xxx"},
            ...
            {"role": "user", "content": "xxx"}
          ],
          "chosen": "chosen response",
          "rejected": "rejected response"
        }
      }
      

      See func chatml_preference in tokenization.py for more details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hakkero-dataloader-1.2.2.tar.gz (23.5 kB view details)

Uploaded Source

File details

Details for the file hakkero-dataloader-1.2.2.tar.gz.

File metadata

  • Download URL: hakkero-dataloader-1.2.2.tar.gz
  • Upload date:
  • Size: 23.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.13

File hashes

Hashes for hakkero-dataloader-1.2.2.tar.gz
Algorithm Hash digest
SHA256 c5e212f56b35b02ae312bb785fed2e417a19e6957dcb07391e8e59b16bb04bcd
MD5 6b942f7c07e331ea4458573552f777b8
BLAKE2b-256 a0e790587f1910f2f99929b09aae0eeb2e3a0ea29a92b474158fce5ea7c4613c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page