Skip to main content

Named Tensors for Legible Deep Learning in JAX

Project description

Haliax

Build Status Documentation Status License PyPI

Though you don’t seem to be much for listening, it’s best to be careful. If you managed to catch hold of even just a piece of my name, you’d have all manner of power over me.
— Patrick Rothfuss, The Name of the Wind

Haliax is a JAX library for building neural networks with named tensors, in the tradition of Alexander Rush's Tensor Considered Harmful. Named tensors improve the legibility and compositionality of tensor programs by using named axes instead of positional indices as typically used in NumPy, PyTorch, etc.

Despite the focus on legibility, Haliax is also fast, typically about as fast as "pure" JAX code. Haliax is also built to be scalable: it can support Fully-Sharded Data Parallelism (FSDP) and Tensor Parallelism with just a few lines of code. Haliax powers Levanter, our companion library for training large language models and other foundation models, with scale proven up to 20B parameters and up to a TPU v3-256 pod slice.

Example: Attention

Here's a minimal attention module implementation in Haliax. For a more detailed introduction, please see the Haliax tutorial. (We use the excellent Equinox library for its module system and tree transformations.)

import equinox as eqx
import jax
import jax.numpy as jnp
import haliax as hax
import haliax.nn as hnn

Pos = hax.Axis("position", 1024)  # sequence length
KPos = Pos.alias("key_position")
Head = hax.Axis("head", 8)  # number of attention heads
Key = hax.Axis("key", 64)  # key size
Embed = hax.Axis("embed", 512)  # embedding size

# alternatively:
#Pos, KPos, Head, Key, Embed = hax.make_axes(pos=1024, key_pos=1024, head=8, key=64, embed=512)


def attention_scores(Key, KPos, query, key, mask):
    # how similar is each query to each key
    scores = hax.dot(query, key, axis=Key) / jnp.sqrt(Key.size)

    if mask is not None:
        scores -= 1E9 * (1.0 - mask)

    # convert to probabilities
    scores = haliax.nn.softmax(scores, KPos)
    return scores


def attention(Key, KPos, query, key, value, mask):
    scores = attention_scores(Key, KPos, query, key, mask)
    answers = hax.dot(scores, value, axis=KPos)

    return answers


# Causal Mask means that if pos >= key_pos, then pos can attend to key_pos
causal_mask = hax.arange(Pos).broadcast_axis(KPos) >= hax.arange(KPos)


class Attention(eqx.Module):
    proj_q: hnn.Linear  # [Embed] -> [Head, Key]
    proj_k: hnn.Linear  # [Embed] -> [Head, Key]
    proj_v: hnn.Linear  # [Embed] -> [Head, Key]
    proj_answer: hnn.Linear  # output projection from [Head, Key] -> [Embed]

    @staticmethod
    def init(Embed, Head, Key, *, key):
        k_q, k_k, k_v, k_ans = jax.random.split(key, 4)
        proj_q = hnn.Linear.init(In=Embed, Out=(Head, Key), key=k_q)
        proj_k = hnn.Linear.init(In=Embed, Out=(Head, Key), key=k_k)
        proj_v = hnn.Linear.init(In=Embed, Out=(Head, Key), key=k_v)
        proj_answer = hnn.Linear.init(In=(Head, Key), Out=Embed, key=k_ans)
        return Attention(proj_q, proj_k, proj_v, proj_answer)

    def __call__(self, x, mask=None):
        q = self.proj_q(x)
        # Rename "position" to "key_position" for self attention
        k = self.proj_k(x).rename({"position": "key_position"})
        v = self.proj_v(x).rename({"position": "key_position"})

        answers = attention(Key, KPos, q, k, v, causal_mask)

        x = self.proj_answer(answers)
        return x

Haliax was created by Stanford's Center for Research on Foundation Models (CRFM)'s research engineering team. You can find us in the #levanter channel on the unofficial Jax LLM Discord.

Documentation

Tutorials

These are some tutorials to get you started with Haliax. They are available as Colab notebooks:

API Reference

Haliax's API documentation is available at haliax.readthedocs.io.

Contributing

We welcome contributions! Please see CONTRIBUTING.md for more information. We also have a list of good first issues to help you get started. (If those don't appeal, don't hesitate to reach out to us on Discord!)

License

Haliax is licensed under the Apache License, Version 2.0. See LICENSE for the full license text.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

haliax-1.4.dev324.tar.gz (684.7 kB view details)

Uploaded Source

Built Distribution

haliax-1.4.dev324-py3-none-any.whl (109.3 kB view details)

Uploaded Python 3

File details

Details for the file haliax-1.4.dev324.tar.gz.

File metadata

  • Download URL: haliax-1.4.dev324.tar.gz
  • Upload date:
  • Size: 684.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for haliax-1.4.dev324.tar.gz
Algorithm Hash digest
SHA256 9c1545e8b2f844f031d2a9ca9f68228e16524d6560d3a37e278b4692a0ceb7db
MD5 94c2219fead677dfcd43104e8ce977c0
BLAKE2b-256 bda17ca5b50ee753ce144f69a56068b1516c29eaaa812d8aa2399d74b9e5e549

See more details on using hashes here.

Provenance

The following attestation bundles were made for haliax-1.4.dev324.tar.gz:

Publisher: publish_dev.yaml on stanford-crfm/haliax

Attestations:

File details

Details for the file haliax-1.4.dev324-py3-none-any.whl.

File metadata

  • Download URL: haliax-1.4.dev324-py3-none-any.whl
  • Upload date:
  • Size: 109.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for haliax-1.4.dev324-py3-none-any.whl
Algorithm Hash digest
SHA256 ab87e3a2e52a1fc76ea849409b55815b2993954bf2596da66748633cc1c7ff18
MD5 60168b96adca75eddc3e3376c2e3758d
BLAKE2b-256 1309ca1049da42a17ca425206c104100e44cd8b57078a0c53e9988f5024c9eff

See more details on using hashes here.

Provenance

The following attestation bundles were made for haliax-1.4.dev324-py3-none-any.whl:

Publisher: publish_dev.yaml on stanford-crfm/haliax

Attestations:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page