Skip to main content

Named Tensors for Legible Deep Learning in JAX

Project description

Haliax

Build Status Documentation Status License PyPI

Though you don’t seem to be much for listening, it’s best to be careful. If you managed to catch hold of even just a piece of my name, you’d have all manner of power over me.
— Patrick Rothfuss, The Name of the Wind

Haliax is a JAX library for building neural networks with named tensors, in the tradition of Alexander Rush's Tensor Considered Harmful. Named tensors improve the legibility and compositionality of tensor programs by using named axes instead of positional indices as typically used in NumPy, PyTorch, etc.

Despite the focus on legibility, Haliax is also fast, typically about as fast as "pure" JAX code. Haliax is also built to be scalable: it can support Fully-Sharded Data Parallelism (FSDP) and Tensor Parallelism with just a few lines of code. Haliax powers Levanter, our companion library for training large language models and other foundation models, with scale proven up to 20B parameters and up to a TPU v3-256 pod slice.

Example: Attention

Here's a minimal attention module implementation in Haliax. For a more detailed introduction, please see the Haliax tutorial. (We use the excellent Equinox library for its module system and tree transformations.)

import equinox as eqx
import jax
import jax.numpy as jnp
import haliax as hax
import haliax.nn as hnn

Pos = hax.Axis("position", 1024)  # sequence length
KPos = Pos.alias("key_position")
Head = hax.Axis("head", 8)  # number of attention heads
Key = hax.Axis("key", 64)  # key size
Embed = hax.Axis("embed", 512)  # embedding size

# alternatively:
#Pos, KPos, Head, Key, Embed = hax.make_axes(pos=1024, key_pos=1024, head=8, key=64, embed=512)


def attention_scores(Key, KPos, query, key, mask):
    # how similar is each query to each key
    scores = hax.dot(query, key, axis=Key) / jnp.sqrt(Key.size)

    if mask is not None:
        scores -= 1E9 * (1.0 - mask)

    # convert to probabilities
    scores = haliax.nn.softmax(scores, KPos)
    return scores


def attention(Key, KPos, query, key, value, mask):
    scores = attention_scores(Key, KPos, query, key, mask)
    answers = hax.dot(scores, value, axis=KPos)

    return answers


# Causal Mask means that if pos >= key_pos, then pos can attend to key_pos
causal_mask = hax.arange(Pos).broadcast_axis(KPos) >= hax.arange(KPos)


class Attention(eqx.Module):
    proj_q: hnn.Linear  # [Embed] -> [Head, Key]
    proj_k: hnn.Linear  # [Embed] -> [Head, Key]
    proj_v: hnn.Linear  # [Embed] -> [Head, Key]
    proj_answer: hnn.Linear  # output projection from [Head, Key] -> [Embed]

    @staticmethod
    def init(Embed, Head, Key, *, key):
        k_q, k_k, k_v, k_ans = jax.random.split(key, 4)
        proj_q = hnn.Linear.init(In=Embed, Out=(Head, Key), key=k_q)
        proj_k = hnn.Linear.init(In=Embed, Out=(Head, Key), key=k_k)
        proj_v = hnn.Linear.init(In=Embed, Out=(Head, Key), key=k_v)
        proj_answer = hnn.Linear.init(In=(Head, Key), Out=Embed, key=k_ans)
        return Attention(proj_q, proj_k, proj_v, proj_answer)

    def __call__(self, x, mask=None):
        q = self.proj_q(x)
        # Rename "position" to "key_position" for self attention
        k = self.proj_k(x).rename({"position": "key_position"})
        v = self.proj_v(x).rename({"position": "key_position"})

        answers = attention(Key, KPos, q, k, v, causal_mask)

        x = self.proj_answer(answers)
        return x

Haliax was created by Stanford's Center for Research on Foundation Models (CRFM)'s research engineering team. You can find us in the #levanter channel on the unofficial Jax LLM Discord.

Documentation

Tutorials

These are some tutorials to get you started with Haliax. They are available as Colab notebooks:

API Reference

Haliax's API documentation is available at haliax.readthedocs.io.

Contributing

We welcome contributions! Please see CONTRIBUTING.md for more information. We also have a list of good first issues to help you get started. (If those don't appeal, don't hesitate to reach out to us on Discord!)

License

Haliax is licensed under the Apache License, Version 2.0. See LICENSE for the full license text.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

haliax-1.4.dev325.tar.gz (684.7 kB view details)

Uploaded Source

Built Distribution

haliax-1.4.dev325-py3-none-any.whl (109.3 kB view details)

Uploaded Python 3

File details

Details for the file haliax-1.4.dev325.tar.gz.

File metadata

  • Download URL: haliax-1.4.dev325.tar.gz
  • Upload date:
  • Size: 684.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for haliax-1.4.dev325.tar.gz
Algorithm Hash digest
SHA256 4c47f06a913fa8bb3affb867116f3ef8df4f2119a28da8252a2bf3cec22ed0f0
MD5 2694569aa0b08ca09b0776156074cbe2
BLAKE2b-256 e7e0ad2ad301a65ac2ad99f42044ebe826ced10e142573a637e3abf522b380c1

See more details on using hashes here.

Provenance

The following attestation bundles were made for haliax-1.4.dev325.tar.gz:

Publisher: publish_dev.yaml on stanford-crfm/haliax

Attestations:

File details

Details for the file haliax-1.4.dev325-py3-none-any.whl.

File metadata

  • Download URL: haliax-1.4.dev325-py3-none-any.whl
  • Upload date:
  • Size: 109.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for haliax-1.4.dev325-py3-none-any.whl
Algorithm Hash digest
SHA256 0444c100837f436d62ec737099df15d60c30a102992015f6470b5277b921c243
MD5 bdab0efc4676e5be1a56cc4e152d4feb
BLAKE2b-256 91dfc681f12af204895dcf649b68b76c5303555c8aeaa7a2b77fcc0b3587821c

See more details on using hashes here.

Provenance

The following attestation bundles were made for haliax-1.4.dev325-py3-none-any.whl:

Publisher: publish_dev.yaml on stanford-crfm/haliax

Attestations:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page