Skip to main content

misc tools for configs, logs

Project description

hao

configurations, logs and others.

install

pip install hao

precondition

The folder contained any of the following files (searched in this very order) will be treated as project root path.

  • requirements.txt
  • VERSION
  • conf
  • setup.py
  • .idea
  • .git

If your project structure does NOT conform to this, it will not work as expected.

features

config

It will try to load YAML config file from conf folder

.                               # project root
├── conf
│   ├── config-{env}.yml        # if `export env=abc`, will raise error if not found
│   ├── config-{hhostname}.yml  # try to load this file, then the default `config.yml`
│   └── config.yml              # the default config file that should always exist
├── requirements.txt            # every project should have this file
├── VERSION                     # hao.versions.get_version() will try to read this file
├── .git

In following order:

if os.environ.get("env") is not None:
    try_to_load(f'config-{env}.yml', fallback='config.yml')                   # echo $env
else:
    try_to_load(f'config-{socket.gethostname()}.yml', fallback='config.yml')  # echo hostname

Say you have the following content in your config file:

# config.yml
es:
  default:
    host: 172.23.3.3
    port: 9200
    indices:
      - news
      - papers

The get the configured values in your code:

import hao
es_host = hao.config.get('es.default.host')          # str
es_port = hao.config.get('es.default.port')          # int
indices = hao.config.get('es.default.indices')       # list
...

logs

Set the logger levels to filter logs

e.g.

# config.yml
logging:
  __main__: DEBUG
  transformers: WARNING
  lightning: INFO
  pytorch_lightning: INFO
  elasticsearch: WARNING
  tests: DEBUG
  root: INFO                        # root level

Settings for logger:

# config.yml
logger:
  format: "%(asctime)s %(levelname)-7s %(name)s:%(lineno)-4d - %(message)s"  # this is the built-in format
  file:                         # using time-based-rotating file logger
    dir: ~/.logs/spanner/       # log parent folder
    enabled: false              # depends on `logger.file.dir`
    rotate:
      count: 3                  # keep n rotate log files
      when: d                   # rotate log files every `d` (day)

Declare and user the logger

import hao
LOGGER = hao.logs.get_logger(__name__)

LOGGER.debug('message')
LOGGER.info('message')
LOGGER.warnning('message')
LOGGER.error('message')
LOGGER.exception(err)

namespaces

import hao
from hao.namespaces import from_args, attr

@from_args
class ProcessConf(object):
    file_in = attr(str, required=True, help="file path to process")
    file_out = attr(str, required=True, help="file path to save")
    tokenizer = attr(str, required=True, choice=('wordpiece', 'bpe'))


from argparse import Namespace
from pytorch_lightning import Trainer
@from_args(adds=Trainer.add_argparse_args)
class TrainConf(Namespace):
    root_path_checkpoints = attr(str, default=hao.paths.get_path('data/checkpoints/'))
    dataset_train = attr(str, default='train.txt')
    dataset_val = attr(str, default='val.txt')
    dataset_test = attr(str, default='test.txt')
    batch_size = attr(int, default=128, key='train.batch_size')                          # key means try to load from config.yml by the key
    task = attr(str, choices=('ner', 'nmt'), default='ner')
    seed = attr(int)
    epochs = attr(int, default=5)

Where attr is a wrapper for argpars.add_argument()

Usage 1: overwrite the default value from command line

python -m your_module --task=nmt

Usage 2: overwrite the default value from constructor

train_conf = TrainConf(task='nmt')

Value lookup order:

  • command line
  • constructor
  • config yml if key specified in attr
  • default if specified in attr

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hao-3.2.1.tar.gz (80.2 kB view details)

Uploaded Source

Built Distribution

hao-3.2.1-py3-none-any.whl (84.2 kB view details)

Uploaded Python 3

File details

Details for the file hao-3.2.1.tar.gz.

File metadata

  • Download URL: hao-3.2.1.tar.gz
  • Upload date:
  • Size: 80.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for hao-3.2.1.tar.gz
Algorithm Hash digest
SHA256 386ec5527875ac556f44ae5b1a43da62f9f391ad6b8f3c80887f1680db4a56e4
MD5 14c5f6a2a8c965ad98a36e85ad737dd5
BLAKE2b-256 7c360c693c66df59637df054fbbf06d73b4c955f8f00dbe6ea7502d856b8d00c

See more details on using hashes here.

File details

Details for the file hao-3.2.1-py3-none-any.whl.

File metadata

  • Download URL: hao-3.2.1-py3-none-any.whl
  • Upload date:
  • Size: 84.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for hao-3.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 4b33661f6281500762914e438161ee2ebd9f184cabc0ce8d21f9e218779d39b9
MD5 f341176fca201a307f7202111b59167c
BLAKE2b-256 0793e7009486ba69abe2b657043cba0bb936b3079a967593fe05c9c7355e7cdc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page