Skip to main content

conf, logs, namespace, etc

Project description

hao

configurations, logs and others.

install

pip install hao

precondition

The folder contained any of the following files (searched in this very order) will be treated as project root path.

  • requirements.txt
  • VERSION
  • conf
  • setup.py
  • .idea
  • .git

If your project structure does NOT conform to this, it will not work as expected.

features

config

It will try to load YAML config file from conf folder

.                               # project root
├── conf
│   ├── config-{env}.yml        # if `export env=abc`, will raise error if not found
│   ├── config-{hhostname}.yml  # try to load this file, then the default `config.yml`
│   └── config.yml              # the default config file that should always exist
├── requirements.txt            # every project should have this file
├── VERSION                     # hao.versions.get_version() will try to read this file
├── .git

In following order:

if os.environ.get("env") is not None:
    try_to_load(f'config-{env}.yml', fallback='config.yml')                   # echo $env
else:
    try_to_load(f'config-{socket.gethostname()}.yml', fallback='config.yml')  # echo hostname

Say you have the following content in your config file:

# config.yml
es:
  default:
    host: 172.23.3.3
    port: 9200
    indices:
      - news
      - papers

The get the configured values in your code:

import hao
es_host = hao.config.get('es.default.host')          # str
es_port = hao.config.get('es.default.port')          # int
indices = hao.config.get('es.default.indices')       # list
...

logs

Set the logger levels to filter logs

e.g.

# config.yml
logging:
  __main__: DEBUG
  transformers: WARNING
  lightning: INFO
  pytorch_lightning: INFO
  elasticsearch: WARNING
  tests: DEBUG
  root: INFO                        # root level

Settings for logger:

# config.yml
logger:
  format: "%(asctime)s %(levelname)-7s %(name)s:%(lineno)-4d - %(message)s"   # overwrite to change to other format
  handlers:
    TimedRotatingFileHandler:    # any Handlers in `logging` and `logging.handlers` with it's config
      when: d
      backupCount: 3

Declare and user the logger

import hao
LOGGER = hao.logs.get_logger(__name__)

LOGGER.debug('message')
LOGGER.info('message')
LOGGER.warnning('message')
LOGGER.error('message')
LOGGER.exception(err)

namespaces

import hao
from hao.namespaces import from_args, attr

@from_args
class ProcessConf(object):
    file_in = attr(str, required=True, help="file path to process")
    file_out = attr(str, required=True, help="file path to save")
    tokenizer = attr(str, required=True, choice=('wordpiece', 'bpe'))


from argparse import Namespace
from pytorch_lightning import Trainer
@from_args(adds=Trainer.add_argparse_args)
class TrainConf(Namespace):
    root_path_checkpoints = attr(str, default=hao.paths.get_path('data/checkpoints/'))
    dataset_train = attr(str, default='train.txt')
    dataset_val = attr(str, default='val.txt')
    dataset_test = attr(str, default='test.txt')
    batch_size = attr(int, default=128, key='train.batch_size')                          # key means try to load from config.yml by the key
    task = attr(str, choices=('ner', 'nmt'), default='ner')
    seed = attr(int)
    epochs = attr(int, default=5)

Where attr is a wrapper for argpars.add_argument()

Usage 1: overwrite the default value from command line

python -m your_module --task=nmt

Usage 2: overwrite the default value from constructor

train_conf = TrainConf(task='nmt')

Value lookup order:

  • command line
  • constructor
  • config yml if key specified in attr
  • default if specified in attr

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hao-3.6.8.tar.gz (93.9 kB view details)

Uploaded Source

Built Distribution

hao-3.6.8-py3-none-any.whl (99.8 kB view details)

Uploaded Python 3

File details

Details for the file hao-3.6.8.tar.gz.

File metadata

  • Download URL: hao-3.6.8.tar.gz
  • Upload date:
  • Size: 93.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.13 CPython/3.8.5 Darwin/20.6.0

File hashes

Hashes for hao-3.6.8.tar.gz
Algorithm Hash digest
SHA256 24fdc9b536a8913be3d831c9c2645b7c087d5268a1c8d6745fa91ae03b35ed1e
MD5 99b24be141f37b151388e88550433062
BLAKE2b-256 90211af516217bdebc7e9597e197b20d4796983ed5d4433c5479b722fdde2976

See more details on using hashes here.

File details

Details for the file hao-3.6.8-py3-none-any.whl.

File metadata

  • Download URL: hao-3.6.8-py3-none-any.whl
  • Upload date:
  • Size: 99.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.13 CPython/3.8.5 Darwin/20.6.0

File hashes

Hashes for hao-3.6.8-py3-none-any.whl
Algorithm Hash digest
SHA256 b0f4a3bbb5d5bb70f3a39490bd6b173a138c0fddc61ecb35f621b3760a6aa7d6
MD5 014d8571eee02650c1c6afc48a614ea8
BLAKE2b-256 f897c75e907181e2a97e98e6749a2a69049ce08e26b50fab59db25b7b039cddd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page