Skip to main content

conf, logs, namespace, etc

Project description

hao

configurations, logs and others.

install

pip install hao

precondition

The folder contained any of the following files (searched in this very order) will be treated as project root path.

  • pyproject.toml
  • requirements.txt
  • setup.py
  • LICENSE
  • .idea
  • .git
  • .vscode

If your project structure does NOT conform to this, it will not work as expected.

features

config

It will try to load YAML config file from conf folder

.                               # project root
├── conf
│   ├── config-{env}.yml        # if `export env=abc`, will raise error if not found
│   ├── config-{hostname}.yml   # try to load this file, then the default `config.yml`
│   └── config.yml              # the default config file that should always exist
├── pyproject.toml              # or requirements.txt
├── .git

In following order:

if os.environ.get("env") is not None:
    try_to_load(f'config-{env}.yml', fallback='config.yml')                   # echo $env
else:
    try_to_load(f'config-{socket.gethostname()}.yml', fallback='config.yml')  # echo hostname

Say you have the following content in your config file:

# config.yml
es:
  default:
    host: 172.23.3.3
    port: 9200
    indices:
      - news
      - papers

The get the configured values in your code:

import hao
es_host = hao.config.get('es.default.host')          # str
es_port = hao.config.get('es.default.port')          # int
indices = hao.config.get('es.default.indices')       # list
...

logs

Set the logger levels to filter logs

e.g.

# config.yml
logging:
  __main__: DEBUG
  transformers: WARNING
  lightning: INFO
  pytorch_lightning: INFO
  elasticsearch: WARNING
  tests: DEBUG
  root: INFO                        # root level

Settings for logger:

# config.yml
logger:
  format: "%(asctime)s %(levelname)-7s %(name)s:%(lineno)-4d - %(message)s"   # overwrite to change to other format
  handlers:
    TimedRotatingFileHandler:    # any Handlers in `logging` and `logging.handlers` with it's config
      when: d
      backupCount: 3

Declare and user the logger

import hao
LOGGER = hao.logs.get_logger(__name__)

LOGGER.debug('message')
LOGGER.info('message')
LOGGER.warnning('message')
LOGGER.error('message')
LOGGER.exception(err)

namespaces

import hao
from hao.namespaces import from_args, attr

@from_args
class ProcessConf(object):
    file_in = attr(str, required=True, help="file path to process")
    file_out = attr(str, required=True, help="file path to save")
    tokenizer = attr(str, required=True, choice=('wordpiece', 'bpe'))


from argparse import Namespace
from pytorch_lightning import Trainer
@from_args(adds=Trainer.add_argparse_args)
class TrainConf(Namespace):
    root_path_checkpoints = attr(str, default=hao.paths.get_path('data/checkpoints/'))
    dataset_train = attr(str, default='train.txt')
    dataset_val = attr(str, default='val.txt')
    dataset_test = attr(str, default='test.txt')
    batch_size = attr(int, default=128, key='train.batch_size')                          # key means try to load from config.yml by the key
    task = attr(str, choices=('ner', 'nmt'), default='ner')
    seed = attr(int)
    epochs = attr(int, default=5)

Where attr is a wrapper for argpars.add_argument()

Usage 1: overwrite the default value from command line

python -m your_module --task=nmt

Usage 2: overwrite the default value from constructor

train_conf = TrainConf(task='nmt')

Value lookup order:

  • command line
  • constructor
  • config yml if key specified in attr
  • default if specified in attr

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hao-3.7.14.tar.gz (99.7 kB view details)

Uploaded Source

Built Distribution

hao-3.7.14-py3-none-any.whl (108.7 kB view details)

Uploaded Python 3

File details

Details for the file hao-3.7.14.tar.gz.

File metadata

  • Download URL: hao-3.7.14.tar.gz
  • Upload date:
  • Size: 99.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.28.2

File hashes

Hashes for hao-3.7.14.tar.gz
Algorithm Hash digest
SHA256 86ec372e2dcc1d0ab8564a3dc3d135fb0e79643deeb65b5ab3c67d6dd8aa146e
MD5 881a91c2bd483a42ab9211fcbe4cc3ec
BLAKE2b-256 2502e2343408a7b57dba7afe24939588c5788e42da2df2336eeb7b57cf528369

See more details on using hashes here.

File details

Details for the file hao-3.7.14-py3-none-any.whl.

File metadata

  • Download URL: hao-3.7.14-py3-none-any.whl
  • Upload date:
  • Size: 108.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.28.2

File hashes

Hashes for hao-3.7.14-py3-none-any.whl
Algorithm Hash digest
SHA256 9f8b16495d3be0cfc3a1689e6d0473349df29deb153994b75e4eea81d4c61c87
MD5 f132eafb7831def3ed9dae87f056023d
BLAKE2b-256 11273ff880541f83cb44e5f431d28a5e5b97d7c308111abe020e2c01c2f8e580

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page