Skip to main content

HomeKit Accessory Protocol implementation in python

Project description

PyPI version Build Status codecov Python Versions Documentation Status Downloads

HAP-python

HomeKit Accessory Protocol implementation in python 3. With this project, you can integrate your own smart devices and add them to your iOS Home app. Since Siri is integrated with the Home app, you can start voice-control your accessories right away.

Main features:

  • Camera - HAP-python supports the camera accessory from version 2.3.0!
  • asyncio support - You can run various tasks or accessories in the event loop.
  • Out of the box support for Apple-defined services - see them in the resources folder.
  • Secure pairing by just scanning the QR code.
  • Integrated with the home automation framework Home Assistant.

The project was developed for a Raspberry Pi, but it should work on other platforms. To kick-start things, you can open main.py or busy_home.py, where you will find some fake accessories. Just run one of them, for example python3 busy_home.py, and you can add it in the Home app (be sure to be in the same network). Stop it by hitting Ctrl+C.

There are example accessories as well as integrations with real products in the accessories folder. See how to configure your camera in camera_main.py.

Table of Contents

  1. API
  2. Installation
  3. Setting up a camera
  4. Run at boot (and a Switch to shutdown your device)
  5. Notice

Installation

As of version 3.5.1, HAP-python no longer supports python older than 3.6, because we are moving to asyncio. If your platform does not have a compatible python out of the box, you can install it manually or just use an older version of HAP-python.

As a prerequisite, you will need Avahi/Bonjour installed (due to zeroconf package). On a Raspberry Pi, you can get it with:

$ sudo apt-get install libavahi-compat-libdnssd-dev

avahi-utils may also fit the bill. Then, you can install with pip3 (you will need sudo or --user for the install):

$ pip3 install HAP-python[QRCode]

This will install HAP-python in your python packages, so that you can import it as pyhap. To uninstall, just do:

$ pip3 uninstall HAP-python

API

A typical flow for using HAP-python starts with implementing an Accessory. This is done by subclassing Accessory and putting in place a few details (see below). After that, you give your accessory to an AccessoryDriver to manage. This will take care of advertising it on the local network, setting a HAP server and running the Accessory. Take a look at main.py for a quick start on that.

from pyhap.accessory import Accessory, Category
import pyhap.loader as loader

class TemperatureSensor(Accessory):
    """Implementation of a mock temperature sensor accessory."""

    category = Category.SENSOR  # This is for the icon in the iOS Home app.

    def __init__(self, *args, **kwargs):
        """Here, we just store a reference to the current temperature characteristic and
        add a method that will be executed every time its value changes.
        """
        # If overriding this method, be sure to call the super's implementation first.
        super().__init__(*args, **kwargs)

        # Add the services that this Accessory will support with add_preload_service here
        temp_service = self.add_preload_service('TemperatureSensor')
        self.temp_char = temp_service.get_characteristic('CurrentTemperature')

        # Having a callback is optional, but you can use it to add functionality.
        self.temp_char.setter_callback = self.temperature_changed

    def temperature_changed(self, value):
        """This will be called every time the value of the CurrentTemperature
        is changed. Use setter_callbacks to react to user actions, e.g. setting the
        lights On could fire some GPIO code to turn on a LED (see pyhap/accessories/LightBulb.py).
        """
        print('Temperature changed to: ', value)

    @Accessory.run_at_interval(3)  # Run this method every 3 seconds
    # The `run` method can be `async` as well
    def run(self):
        """We override this method to implement what the accessory will do when it is
        started.

        We set the current temperature to a random number. The decorator runs this method
        every 3 seconds.
        """
        self.temp_char.set_value(random.randint(18, 26))

    # The `stop` method can be `async` as well
    def stop(self):
        """We override this method to clean up any resources or perform final actions, as
        this is called by the AccessoryDriver when the Accessory is being stopped.
        """
        print('Stopping accessory.')

Service Callbacks

When you are working with tightly coupled characteristics such as "On" and "Brightness," you may need to use a service callback to receive all changes in a single request.

With characteristic callbacks, you do now know that a "Brightness" characteristic is about to be processed right after an "On" and may end up setting a LightBulb to 100% and then dim it back down to the expected level.

from pyhap.accessory import Accessory
from pyhap.const import Category
import pyhap.loader as loader

class Light(Accessory):
    """Implementation of a mock light accessory."""

    category = Category.CATEGORY_LIGHTBULB  # This is for the icon in the iOS Home app.

    def __init__(self, *args, **kwargs):
        """Here, we just store a reference to the on and brightness characteristics and
        add a method that will be executed every time their value changes.
        """
        # If overriding this method, be sure to call the super's implementation first.
        super().__init__(*args, **kwargs)

        # Add the services that this Accessory will support with add_preload_service here
        serv_light = self.add_preload_service('Lightbulb')
        self.char_on = serv_light.configure_char('On', value=self._state)
        self.char_brightness = serv_light.configure_char('Brightness', value=100)

        serv_light.setter_callback = self._set_chars

    def _set_chars(self, char_values):
        """This will be called every time the value of the on of the
        characteristics on the service changes.
        """
        if "On" in char_values:
            print('On changed to: ', char_values["On"])
        if "Brightness" in char_values:
            print('Brightness changed to: ', char_values["Brightness"])

    @Accessory.run_at_interval(3)  # Run this method every 3 seconds
    # The `run` method can be `async` as well
    def run(self):
        """We override this method to implement what the accessory will do when it is
        started.

        We set the current temperature to a random number. The decorator runs this method
        every 3 seconds.
        """
        self.char_on.set_value(random.randint(0, 1))
        self.char_brightness.set_value(random.randint(1, 100))

    # The `stop` method can be `async` as well
    def stop(self):
        """We override this method to clean up any resources or perform final actions, as
        this is called by the AccessoryDriver when the Accessory is being stopped.
        """
        print('Stopping accessory.')

Setting up a camera

The Camera accessory implements the HomeKit Protocol for negotiating stream settings, such as the picture width and height, number of audio channels and others. Starting a video and/or audio stream is very platform specific. Because of this, you need to figure out what video and audio settings your camera supports and set them in the options parameter that is passed to the Camera Accessory. Refer to the documentation for the Camera contructor for the settings you need to specify.

By default, HAP-python will execute the ffmpeg command with the negotiated parameters when the stream should be started and will terminate the started process when the stream should be stopped (see the default: Camera.FFMPEG_CMD). If the default command is not supported or correctly formatted for your platform, the streaming can fail.

For these cases, HAP-python has hooks so that you can insert your own command or implement the logic for starting or stopping the stream. There are two options:

  1. Pass your own command that will be executed when the stream should be started.

    You pass the command as a value to the key start_stream_cmd in the options parameter to the constuctor of the Camera Accessory. The command is formatted using the negotiated stream configuration parameters. For example, if the negotiated width is 640 and you pass foo start -width {width}, the command will be formatted as foo start -width 640.

    The full list of negotiated stream configuration parameters can be found in the documentation for the Camera.start method.

  2. Implement your own logic to start, stop and reconfigure the stream.

    If you need more flexibility in managing streams, you can directly implement the Camera methods start, stop and reconfigure. Each will be called when the stream should be respectively started, stopped or reconfigured. The start and reconfigure methods are given the negotiated stream configuration parameters.

    Have a look at the documentation of these methods for more information.

Finally, if you can take snapshots from the camera, you may want to implement the Camera.snapshot method. By default, this serves a stock photo.

Run at boot

This is a quick way to get HAP-python to run at boot on a Raspberry Pi. It is recommended to turn on "Wait for network" in raspi-config. If this turns to be unreliable, see this.

Copy the below in /etc/systemd/system/HAP-python.service (needs sudo).

[Unit]
Description = HAP-python daemon
Wants = pigpiod.service  # Remove this if you don't depend on pigpiod
After = local-fs.target network-online.target pigpiod.service

[Service]
User = lesserdaemon  # It's a good idea to use some unprivileged system user
# Script starting HAP-python, e.g. main.py
# Be careful to set any paths you use, e.g. for persisting the state.
ExecStart = /usr/bin/python3 /home/lesserdaemon/.hap-python/hap-python.py

[Install]
WantedBy = multi-user.target

Test that everything is fine by doing:

> sudo systemctl start HAP-python
> systemctl status HAP-python
> sudo journalctl -u HAP-python  # to see the output of the start up script.
> sudo systemctl stop HAP-python

To enable or disable at boot, do:

> sudo systemctl enable HAP-python
> sudo systemctl disable HAP-python

Shutdown switch

If you are running HAP-python on a Raspberry Pi, you may want to add a Shutdown Switch to your Home. This is a Switch Accessory, which, when triggered, executes sudo shutdown -h now, i.e. it shutdowns and halts the Pi. This allows you to safely unplug it.

For the above to work, you need to enable passwordless /sbin/shutdown to whichever user is running HAP-python. For example, do:

$ sudo visudo # and add the line: "<hap-user> ALL=NOPASSWD: /sbin/shutdown".

Notice

Some HAP know-how was taken from HAP-NodeJS by KhaosT.

I am not aware of any bugs, but I am more than confident that such exist. If you find any, please report and I will try to fix them.

Suggestions are always welcome.

Have fun!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hap_python-4.9.2.tar.gz (291.2 kB view details)

Uploaded Source

Built Distribution

HAP_python-4.9.2-py3-none-any.whl (264.1 kB view details)

Uploaded Python 3

File details

Details for the file hap_python-4.9.2.tar.gz.

File metadata

  • Download URL: hap_python-4.9.2.tar.gz
  • Upload date:
  • Size: 291.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for hap_python-4.9.2.tar.gz
Algorithm Hash digest
SHA256 5218a38f576f9b8f55aa3ffd93b9415e3429902bb340dcde74044b2f40f47c0d
MD5 0f6013ac4fbd51369894999ad8e49106
BLAKE2b-256 4ea6b25430858a4d213e7a3bb1135b70d77d61d2bbc46480a38751b87ca2f9a1

See more details on using hashes here.

File details

Details for the file HAP_python-4.9.2-py3-none-any.whl.

File metadata

  • Download URL: HAP_python-4.9.2-py3-none-any.whl
  • Upload date:
  • Size: 264.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for HAP_python-4.9.2-py3-none-any.whl
Algorithm Hash digest
SHA256 acd9e7bed3d6ce6ef9e893b254a4eb6da62f69b2ef9280b275a8999e4d3634b6
MD5 e41d39c27e463cc9cbbe7c81ef6e30e9
BLAKE2b-256 72267c7a4be12e2fa5449057b8ed723ee7f5aa8ec9297f378da1bebc7cc80726

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page