Skip to main content

Toolbox for reinforced developing of supervised machine learning models (as proof-of-concept)

Project description

Happy ;) Learning

Description:

Toolbox for reinforced developing of supervised learning models as proof-of-concept in python. It is specially designed to breed and optimize supervised machine learning models using genetic algorithm (GA) both on the feature engineering side and on the hyper parameter tuning side.

Table of Content:

  1. Installation
  2. Requirements
  3. Introduction
    • Practical Usage
    • FeatureEngineer
    • FeatureTournament
    • FeatureSelector
    • FeatureLearning
    • Genetic
    • DataMiner

1. Installation:

You can easily install Happy Learning via pip install happy_learning on every operating system.

2. Requirements:

  • ...

3. Introduction:

  • Practical Usage:

HappyLearning is designed for reinforced developing of supervised machine learning prototypes using structured (tabular) data especially. It covers all aspects of the developing process, such as feature engineering, feature and model selection as well as model optimization. To handle big data sets it has dask implemented under the hood.

  • Feature Engineer:

Process your tabular data smartly. The Feature Engineer module is equipped with all necessary (tabular) feature processing methods. Moreover, it is able to capture the meta data about the data set such as scaling measurement types of the features, taken processing steps, etc.

  • Feature Learning:

It combines both the feature engineering module and the genetic algorithm module to create a reinforcement learning environment to smartly generate new features. The module creates separate learning environments for categorical and continuous features. The categorical features are one-hot encoded and then unified (one-hot merging). Whereas the (semi-) continuous features are systematically processed by using several transformation and interaction methods.

  • Feature Tournament:

Feature tournament is a process to evaluate the importance of each feature regarding to a specific target feature. It uses the concept of (Additive) Shapley Values to calculate the importance score.

-- Data Typing:

    Check whether represented data types of Pandas is equal to the real data types occuring in the data
  • Feature Selector:

The Feature Selector module applies the feature tournament to calculate feature importance scores and select automatically the best n features based on the scoring.

  • Genetic:

Reinforcement learning module either to evaluate the fittest model / hyper parameter configuration or to engineer (tabular) features. It captures several evaluation statistics regarding the evolution process as well as the model performance metrics. More over, it is able to transfer knowledge across re-trainings.

-- Model / Hyper Parameter Optimization:

    Optimize model / hyper parameter selection ...
        -> Sklearn models
        -> Popular "stand alone" models like XGBoost, CatBoost, etc.
        -> Deep Learning models (using PyTorch only)

-- Feature Engineering / Selection:

    Optimize feature engineering / selection using processing methods from Feature Engineer module ...
        -> Choose only features of fittest models to apply feature engineering based on the action space of the Feature Engineer module
  • DataMiner:

Combines all modules above in such a way, that it becomes an ai for reinforced prototyping itself. Therefore it uses the ... -> Feauture Engineer module to pre-process data in general (imputation, label encoding, date feature processing, etc.) -> Feature Learning module to smartly engineer tabular features -> Feature Selector module to select the most important features -> Genetic module to find a proper model all by its self.

  • TextMiner

Use text data (natural language) by generating various numerical features describing the text

-- Segmentation:

    Categorize potential text features into following segments ...
        -> Web features
            1) URL
            2) EMail
        -> Enumerated features
        -> Natural language (original text features)
        -> Identifier (original id features)
        -> Unknown

-- Simple text processing:
    Apply simple processing methods to text features
        -> Merge two text features by given separator
        -> Replace occurances
        -> Subset data set or feature list by given string

-- Language methods:
    Apply methods to ...
        -> ... detect language in text
        -> ... translate using Google Translate under the hood

-- Generate linguistic features:
    Apply semantic text processing to generate numeric features
        -> Clean text counter (text after removing stop words, punctuation and special character and lemmatizing)
        -> Part-of-Speech Tagging counter & labels
        -> Named Entity Recognition counter & labels
        -> Dependencies counter & labels (Tree based / Noun Chunks)
        -> Emoji counter & labels

-- Generate similarity / clustering features:
    Apply similarity methods to generate continuous features using word embeddings
        -> TF-IDF

4. Documentation & Examples:

Check the jupyter notebooks for the documentation and examples. Happy ;) Learning

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

happy_learning-0.2.2.tar.gz (179.7 kB view details)

Uploaded Source

Built Distributions

happy_learning-0.2.2-py3.7.egg (406.7 kB view details)

Uploaded Source

happy_learning-0.2.2-py3-none-any.whl (188.0 kB view details)

Uploaded Python 3

File details

Details for the file happy_learning-0.2.2.tar.gz.

File metadata

  • Download URL: happy_learning-0.2.2.tar.gz
  • Upload date:
  • Size: 179.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.24.0 setuptools/51.3.3 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.3

File hashes

Hashes for happy_learning-0.2.2.tar.gz
Algorithm Hash digest
SHA256 62d7da321a1f0f66fd834166c5016797c39ac5dacdd6c2a00aabfd54410c222b
MD5 e51fed62a94e1e36b8ad8cbd0f57b639
BLAKE2b-256 dc3952adfbe800a59bce5a34293b4e9adfa51845c42288a7c46d1b9abd1d1226

See more details on using hashes here.

File details

Details for the file happy_learning-0.2.2-py3.7.egg.

File metadata

  • Download URL: happy_learning-0.2.2-py3.7.egg
  • Upload date:
  • Size: 406.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.24.0 setuptools/51.3.3 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.3

File hashes

Hashes for happy_learning-0.2.2-py3.7.egg
Algorithm Hash digest
SHA256 cae532c21ef7e672a9f2cf6e38808dac9792218d781636c51c397ea71c819e6f
MD5 79122730627664bd9df16b3e11b6b55f
BLAKE2b-256 5f8c6e1b352127c2eb3f2d189af6698de15a42bfde217e0204f19e2599ac0d36

See more details on using hashes here.

File details

Details for the file happy_learning-0.2.2-py3-none-any.whl.

File metadata

  • Download URL: happy_learning-0.2.2-py3-none-any.whl
  • Upload date:
  • Size: 188.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.24.0 setuptools/51.3.3 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.3

File hashes

Hashes for happy_learning-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 d01053392e5180060d05eae1b19034c0ef072e10dff5b826883f320395b0a007
MD5 9407ccd77668c3c8a86ee1578eb00040
BLAKE2b-256 3fd5f76655bbb5680e79697760d7601bd447d75bba0505609989f4ff6fe7b7b8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page