Skip to main content

Toolbox for reinforced developing of machine learning models (as proof-of-concept)

Project description

Happy ;) Learning

Description:

Toolbox for reinforced developing of machine learning models (as proof-of-concept) in python. It is specially designed to evolve and optimize machine learning models using evolutionary algorithms both on the feature engineering side and on the hyper parameter tuning side.

Table of Content:

  1. Installation
  2. Requirements
  3. Introduction
    • Practical Usage
    • FeatureEngineer
    • FeatureTournament
    • FeatureSelector
    • FeatureLearning
    • ModelGenerator
    • NetworkGenerator
    • ClusteringGenerator
    • GeneticAlgorithm
    • SwarmIntelligence
    • DataMiner

1. Installation:

You can easily install Happy Learning via pip install happy_learning on every operating system.

2. Requirements:

  • ...

3. Introduction:

  • Practical Usage:

It covers all aspects of the developing process, such as feature engineering, feature and model selection as well as hyper parameter optimization.

  • Feature Engineer:

Process your tabular data smartly. The Feature Engineer module is equipped with all necessary (tabular) feature processing methods. Moreover, it is able to capture the metadata about the data set such as scaling measurement types of the features, taken processing steps, etc. To scale big data sets it generates temporary data files for each feature separately and loads them for processing purposes only.

  • Feature Learning:

It combines both the feature engineering module and the genetic algorithm module to create a reinforcement learning environment to smartly generate new features. The module creates separate learning environments for categorical and continuous features. The categorical features are one-hot encoded and then unified (one-hot merging). Whereas the (semi-) continuous features are systematically processed by using several transformation and interaction methods.

  • Feature Tournament:

Feature tournament is a process to evaluate the importance of each feature regarding to a specific target feature. It uses the concept of (Additive) Shapley Values to calculate the importance score.

-- Data Typing:

    Check whether represented data types of Pandas is equal to the real data types occuring in the data
  • Feature Selector:

The Feature Selector module applies the feature tournament to calculate feature importance scores and select automatically the best n features based on the scoring.

  • ModelGenerator:

The ModelGenerator module generates supervised machine learning models and all necessary hyper parameters for structured (tabular) data.

  -- Model / Hyper parameter:

     Classification models ...
        -> Ada Boosting (ada)
        -> Cat Boost (cat)
        -> Gradient Boosting Decision Tree (gbo)
        -> K-Nearest Neighbor (knn)
        -> Linear Discriminant Analysis (lida)
        -> Logisitic Regression (log)
        -> Quadratic Discriminant Analysis (qda)
        -> Random Forest (rf)
        -> Support-Vector Machine (svm)
        -> Nu-Support-Vector Machine (nusvm)
        -> Extreme Gradient Boosting Decision Tree (xgb)

     Regression models ...
        -> Ada Boosting (ada)
        -> Cat Boost (cat)
        -> Elastic Net (elastic)
        -> Generalized Additive Models (gam)
        -> Gradient Boosting Decision Tree (gbo)
        -> K-Nearest Neighbor (knn)
        -> Random Forest (rf)
        -> Support-Vector Machine (svm)
        -> Nu-Support-Vector Machine (nusvm)
        -> Extreme Gradient Boosting Decision Tree (xgb)
  • NetworkGenerator:

The NetworkGenerator module generates neural network architectures and all necessary hyper parameters for text data using PyTorch.

  -- Model / Hyper parameter:

     -> Attention Network (att)
     -> Gated Recurrent Unit (gru)
     -> Long-Short Term Memory (lstm)
     -> Multi-Layer Perceptron (mlp)
     -> Recurrent Neural Network (rnn)
     -> Recurrent Convolutional Neural Network (rcnn)
     -> Self-Attention (self)
     -> Transformer (trans)
  • ClusteringGenerator:

The ClusteringGenerator module generates unsupervised machine learning models and all necessary hyper parameters for text clustering.

  -- Model / Hyper parameter:

     -> Gibbs-Sampling Dirichlet Multinomial Modeling (gsdmm)
     -> Latent Dirichlet Allocation (lda)
     -> Latent Semantic Indexing (lsi)
     -> Non-Negative Matrix Factorization (nmf)
  • GeneticAlgorithm:

Reinforcement learning module either to evaluate the fittest model / hyper parameter configuration or to engineer (tabular) features. It captures several evaluation statistics regarding the evolution process as well as the model performance metrics. More over, it is able to transfer knowledge across re-trainings.

-- Model / Hyperparameter Optimization:

    Optimize model / hyper parameter selection ...
        -> Sklearn models
        -> Popular "stand alone" models like XGBoost, CatBoost, etc.
        -> Deep Learning models (using PyTorch only)
        -> Text clustering models (document & short-text)

-- Feature Engineering / Selection:

    Optimize feature engineering / selection using processing methods from Feature Engineer module ...
        -> Choose only features of fittest models to apply feature engineering based on the action space of the Feature Engineer module
  • SwarmIntelligence:

Reinforcement learning module either to evaluate the fittest model / hyper parameter configuration or to engineer (tabular) features. It captures several evaluation statistics regarding the evolution process as well as the model performance metrics. More over, it is able to transfer knowledge across re-trainings.

-- Model / Hyper parameter Optimization:

    Optimize model / hyper parameter selection ...
        -> Sklearn models
        -> Popular "stand alone" models like XGBoost, CatBoost, etc.
        -> Deep Learning models (using PyTorch only)
        -> Text clustering models (document & short-text)

-- Feature Engineering / Selection:

    Optimize feature engineering / selection using processing methods from Feature Engineer module ...
        -> Choose only features of fittest models to apply feature engineering based on the action space of the Feature Engineer module
  • DataMiner:

Combines all modules for handling structured (tabular) data sets. Therefore, it uses the ... -> Feature Engineer module to pre-process data in general (imputation, label encoding, date feature processing, etc.) -> Feature Learning module to smartly engineer tabular features -> Feature Selector module to select the most important features -> GeneticAlgorithm / SwarmIntelligence module to find a proper model and hyper parameter configuration by its self.

  • TextMiner

Use text data (natural language) by generating various numerical features describing the text

-- Segmentation:

    Categorize potential text features into following segments ...
        -> Web features
            1) URL
            2) EMail
        -> Enumerated features
        -> Natural language (original text features)
        -> Identifier (original id features)
        -> Unknown

-- Simple text processing:
    Apply simple processing methods to text features
        -> Merge two text features by given separator
        -> Replace occurances
        -> Subset data set or feature list by given string

-- Language methods:
    Apply methods to ...
        -> ... detect language in text
        -> ... translate using Google Translate under the hood

-- Generate linguistic features:
    Apply semantic text processing to generate numeric features
        -> Clean text counter (text after removing stop words, punctuation and special character and lemmatizing)
        -> Part-of-Speech Tagging counter & labels
        -> Named Entity Recognition counter & labels
        -> Dependencies counter & labels (Tree based / Noun Chunks)
        -> Emoji counter & labels

-- Generate similarity / clustering features:
    Apply similarity methods to generate continuous features using word embeddings
        -> TF-IDF

4. Documentation & Examples:

Check the methodology.pdf for the documentation and jupyter notebook for examples. Happy ;) Learning

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

happy_learning-0.4.8.tar.gz (236.4 kB view details)

Uploaded Source

Built Distributions

happy_learning-0.4.8-py3.8.egg (478.6 kB view details)

Uploaded Source

happy_learning-0.4.8-py3-none-any.whl (221.5 kB view details)

Uploaded Python 3

File details

Details for the file happy_learning-0.4.8.tar.gz.

File metadata

  • Download URL: happy_learning-0.4.8.tar.gz
  • Upload date:
  • Size: 236.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for happy_learning-0.4.8.tar.gz
Algorithm Hash digest
SHA256 25c43cefd2748258789105599cb89c2300414d60f337e3948c024f3d9346ceeb
MD5 ea3e8c89c75354dc914d272a7ce60ad7
BLAKE2b-256 ad11032648d7ac42b34b60186bb79e0d644af5a0473aa2f8e24e088f8dd11f6e

See more details on using hashes here.

File details

Details for the file happy_learning-0.4.8-py3.8.egg.

File metadata

  • Download URL: happy_learning-0.4.8-py3.8.egg
  • Upload date:
  • Size: 478.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for happy_learning-0.4.8-py3.8.egg
Algorithm Hash digest
SHA256 0ce9e7a8c6fed8979d7c963a4ab7efa88eb41289538dcdd875a0b93c46e5a8ca
MD5 a873647469f7ccf7740d6f6667a6725f
BLAKE2b-256 756f46657c85a0209833aeea96f03d08006099ae632d79507cfe69ef5a19e90c

See more details on using hashes here.

File details

Details for the file happy_learning-0.4.8-py3-none-any.whl.

File metadata

File hashes

Hashes for happy_learning-0.4.8-py3-none-any.whl
Algorithm Hash digest
SHA256 51ed05c4a8f3f20fddb4addee4376ae61a6e5e20034788dd811bb19f325a07b5
MD5 ddf0c2fbb37bcb098845745e3785a400
BLAKE2b-256 d9c9e6f92b4e43c4a9b6330fbad4bfda4093e215388171df32b995367518b553

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page