Skip to main content

Simple SDK for HarperDB.

Project description

harperdb

Python3 implementations of HarperDB API functions. Also provides wrappers for an object-oriented interface.

Installation

pip3 install harperdb

Requirements


harperdb.HarperDB

Each instance of HarperDB represents a running HarperDB instance at a URL, passed to the constructor. Optionally implement Basic Auth as keyword arguments. HarperDB API functions are exposed as instance methods, which produce and consume JSON following the API documentation.

import harperdb
db = harperdb.HarperDB(
    url=HARPERDB_URL,
    username=HARPERDB_USERNAME,
    password=HARPERDB_PASSWORD)

Instance Parameters:

  • url (string): Full URL of HarperDB instance
  • username (string): (optional) Basic Auth username
  • password (string): (optional) Basic Auth password
  • timeout (float): Seconds to wait for a server response, default 10

Instance Attributes:

  • token (string): Value used in Authorization header, or None. The value is generated automatically when instantiated with both username and password
  • timeout (float): Seconds to wait for a server response
  • url (string): Full URL of HarperDB instance

Instance Methods:

These methods expose the HarperDB API functions, and return JSON from the target database instance at HarperDB.url

Schemas and Tables:

  • describe_all()
  • create_schema(schema)
  • describe_schema(schema)
  • drop_schema(schema)
  • create_table(schema, table, hash_attribute)
  • describe_table(schema, table)
  • drop_table(schema, table)
  • drop_attribute(schema, table, attribute)

NoSQL Operations:

  • insert(schema, table, [records])
  • update(schema, table, [records])
  • delete(schema, table, [hashes])
  • search_by_hash(schema, table, [hashes], get_attributes=['*'])
  • search_by_value(schema, table, search_attribute, search_value, get_attributes=['*'])

SQL Operations:

  • sql(SQL)

CSV Operations:

  • csv_data_load(schema, table, path, action="insert")

Jobs:

  • get_job(id)

harperdb.wrappers.HarperDBWrapper

HarperDBWrapper provides a high-level, object-oriented interface for HarperDB. From this top-level object an application programmer can make references to schemas, tables, and records, while making minimal transactions with the server when values are used or modified. Each instance of HarperDBWrapper represents a running HarperDB instance at a URL, passed to the constructor. Optionally implement Basic Auth as keyword arguments.

Schemas are subscriptable by name, and iterating yields instances of HarperDBSchema. The length of a HarperDBWrapper instance returns the number of schemas in the target database. HarperDB API functions are implemented as low-level instance methods, which produce and consume JSON following the API documentation.

import harperdb
db = harperdb.wrappers.HarperDBWrapper(
    url=HARPERDB_URL,
    username=HARPERDB_USERNAME,
    password=HARPERDB_PASSWORD)
dev_schema = db.create_schema('dev')
len(db)  # returns 1
db['dev']  # returns dev_schema
for schema in db:
    schema.name  # returns "dev"

Schemas can be dropped using HarperDB.drop_schema, or using the del keyword and HarperDBSchema.name value like a dictionary:

db.drop_schema('dev')
# same as
del db['dev']

Instance Parameters:

  • url (string): Full URL of HarperDB instance
  • username (string): (optional) Basic Auth username
  • password (string): (optional) Basic Auth password
  • timeout (float): Seconds to wait for a server response, default 10

Instance Attributes:

  • token (string): Value used in Authorization header, or None. The value is generated automatically when instantiated with both username and password
  • timeout (float): Seconds to wait for a server response
  • url (string): Full URL of HarperDB instance

High-Level Instance Methods:

  • create_schema(name): Create a schema, returns HarperDBSchema
  • drop_schema(name): Drop a schema

Low-Level Instance Methods:

These methods expose the HarperDB API functions, and return JSON from the target database instance at HarperDBWrapper.url

Schemas and Tables:

  • _describe_all()
  • _create_schema(schema)
  • _describe_schema(schema)
  • _drop_schema(schema)
  • _create_table(schema, table, hash_attribute)
  • _describe_table(schema, table)
  • _drop_table(schema, table)
  • _drop_attribute(schema, table, attribute)

NoSQL Operations:

  • _insert(schema, table, [records])
  • _update(schema, table, [records])
  • _delete(schema, table, [hashes])
  • _search_by_hash(schema, table, [hashes], get_attributes=['*'])
  • _search_by_value(schema, table, search_attribute, search_value, get_attributes=['*'])

SQL Operations:

  • _sql(SQL)

CSV Operations:

  • _csv_data_load(schema, table, path, action="insert")

Jobs:

  • _get_job(id)

harperdb.wrappers.HarperDBSchema

Tables are subscriptable by name, and iterating yields instances of HarperDBTable. The length of a HarperDBSchema instance returns the number of tables in the schema. Schema metadata is contained in instance attributes.

You should never need to instantiate this class directly, use HarperDBWrapper.create_schema instead.

dog_table = dev_schema.create_table(
        name='dog',
        hash_attribute='id')
len(dev_schema)  # returns 1
dev_schema.database  # returns db

Tables can be dropped using HarperDBSchema.drop_table, or using the del keyword and HarperDBTable.name value like a dictionary:

dev_schema.drop_table('dog')
# same as
del dev_schema['dog']

Schemas can be dropped using the instance method dev_schema.drop().

Instance Attributes:

  • name (string): Name of this schema
  • database (HarperDBWrapper): Instance of the parent database

Instance Methods:

  • create_table(name): Create a table, returns HarperDBTable
  • drop(): Drop this schema
  • drop_table(name): Drop a table

harperdb.wrappers.HarperDBTable

Records are subscriptable by hash_attribute, but HarperDBTable is not iterable. The length of a HarperDBTable instance returns the number of records in the table. Table metadata is contained in instance attributes.

You should never need to instantiate this class directly, use HarperDBSchema.create_table instead.

HarperDBTable.upsert inserts a record from a dictionary, and updates records if a value is given for the table's hash_attribute and a matching record is found in the table.

penny = dog_table.upsert({
    'id': 1,
    'dog_name': 'Penny',
    'owner_name': 'Kyle',
    'breed_id': 154,
    'age': 5,
    'weight_lbs': 35,
    'adorable': True,
})
dog_table[1]  # returns penny
dog_table.record_count  # same as len(dog_table)
dog_table.__createdtime__  # returns int, Unix time with milliseconds
dog_table.created_time  # returns datetime.datetime
dog_table.hash_attribute  # returns "id"
dog_table.schema  # returns dev_schema

HarperDBTable.upsert accepts either a dictionary of record data, or a list of such dictionaries, returning an instance of HarperDBRecord for each record. Any records skipped by the server are omitted from the return value.

Use HarperDBTable.upsert_from_csv to load record data in bulk from a CSV file. Returns an instance of HarperDBRecord for each record. Any records skipped by the server are omitted from the return value.

Records can be deleted using HarperDBTable.delete, or using the del keyword and HarperDBTable.hash_attribute value like a dictionary:

dog_table.delete(1)
# or
del dog_table[1]

Searching by a record value returns a list of matching HarperDBRecord instances.

dog_table.search_by_value(
    attribute='name',
    value='penny')  # returns a list containing penny

Tables can be dropped using the instance method dog_table.drop().

Instance Attributes:

  • attributes (list): All record attributes (string) in this table
  • created_time (datetime.datetime): equal to __createdtime__
  • hash_attribute (string): Primary key of this table
  • id (string): Unique identifier assigned to this table
  • name (string): Name of this table
  • record_count (int): Number of records in this table
  • schema (HarperDBSchema): Instance of the parent schema
  • updated_time (datetime.datetime): equal to __updatedtime__
  • __createdtime__ (int): Epoch time in milliseconds
  • __updatedtime__ (int): Epoch time in milliseconds

Instance Methods:

  • delete(hash): Delete a record by hash value
  • drop(): Drop this table
  • search_by_value(search_attribute, search_value): Return a list of matching HarperDBRecord instances.
  • upsert(record): Insert a record from a dictionary, or list of dictionaries. If a value is given for the table's hash_attribute, and this table has a matching record, that record will be updated. Any records skipped by the server will be omitted from the return value. Returns HarperDBRecord, or a list of HarperDBRecord instances.
  • upsert_from_csv(path): Insert records from a CSV file, with headers in the first row. Any records which have a value for the table's hash_attribute will be updated. Any records skipped by the server will be omitted from the return value. Returns a list of HarperDBRecord instances.

harperdb.wrappers.HarperDBRecord

Record data is subscriptable by record data key, and supports item assignment. Record metadata is stored in instance attributes.

You should never need to instantiate this class directly, use HarperDBTable.upsert instead.

penny['owner_name']  # returns "Kyle"
penny['age'] = 6  # Happy Birthday!
penny.__updatedtime__  # returns int, Unix time with milliseconds
penny.updated_time  # returns datetime.datetime
penny.table  # returns dog_table

Records can be deleted using the instance method penny.delete().

HarperDBRecord.to_dict() returns a dictionary of the record.

Instance Attributes:

  • created_time (datetime.datetime): equal to __createdtime__
  • table (HarperDBTable): Instance of parent table
  • updated_time (datetime.datetime): equal to __updatedtime__
  • __createdtime__ (int): Epoch time in milliseconds
  • __updatedtime__ (int): Epoch time in milliseconds

Instance Methods:

  • delete(): Delete this record
  • to_dict(): Returns record data as a dictionary

harperdb.exceptions.HarperDBError

Raised when the server returns an error (500), or a hash is not found.

This is the only Exception raised explicitly.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

harperdb-0.3.0.tar.gz (10.6 kB view details)

Uploaded Source

Built Distribution

harperdb-0.3.0-py3-none-any.whl (11.7 kB view details)

Uploaded Python 3

File details

Details for the file harperdb-0.3.0.tar.gz.

File metadata

  • Download URL: harperdb-0.3.0.tar.gz
  • Upload date:
  • Size: 10.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7

File hashes

Hashes for harperdb-0.3.0.tar.gz
Algorithm Hash digest
SHA256 d76aa8db0e36eb08ec26f63a5c70fd913fc2254c6b4e73fecbcc4302ed9e3c9e
MD5 772dd14a38b41451d57267b2db137d62
BLAKE2b-256 e8f06757389a3fef682129496930de93b0eb0ed9f4a249a513c3be82639ad866

See more details on using hashes here.

File details

Details for the file harperdb-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: harperdb-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 11.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7

File hashes

Hashes for harperdb-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4261fb9dc2413b981c6a6dbd8b271e624e03864b6000099111a83d5f4fbbd3f9
MD5 fa88229d8a7c24bf35fcdb88edbf7c21
BLAKE2b-256 2d3d98656c4fbc2b8b30bc830f41cc454065db621b3afe437c8549327f3e2fe9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page