Skip to main content

Hartigan K-Means

Project description

Hartigan's K-Means

Build Status

Scope

This project provides an efficient implementation of Hartigan’s method for k-means clustering (Hartigan 1975). It builds on the work of Slonim, Aharoni and Crammer (2013), which introduced a significant improvement to the algorithm computational complexity, and adds an additional optimization for inputs in sparse vector representation. The project is packaged as a python library with a cython-wrapped C++ extension for the partition optimization code. A pure python implementation is included as well.

Installation

pip install hartigan-kmeans

Usage

The main class in this library is HKmeans, which implements the clustering interface of SciKit Learn, providing methods such as fit(), fit_transform(), fit_predict(), etc.

The sample code below clusters the 18.8K documents of the 20-News-Groups dataset into 20 clusters:

import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.datasets import fetch_20newsgroups
from sklearn import metrics
from hkmeans import HKMeans

# read the dataset
dataset = fetch_20newsgroups(subset='all', categories=None,
                             shuffle=True, random_state=256)

gold_labels = dataset.target
n_clusters = np.unique(gold_labels).shape[0]

# create count vectors using the 10K most frequent words
vectorizer = TfidfVectorizer(max_features=10000)
X = vectorizer.fit_transform(dataset.data)

# HKMeans initialization and clustering; parameters:
# perform 10 random initializations (n_init=10); the best one is returned.
# up to 15 optimization iterations in each initialization (max_iter=15)
# use all cores in the running machine for parallel execution (n_jobs=-1)
hkmeans = HKMeans(n_clusters=n_clusters, random_state=128, n_init=10,
                  n_jobs=-1, max_iter=15, verbose=True)
hkmeans.fit(X)

# report standard clustering metrics
print("Homogeneity: %0.3f" % metrics.homogeneity_score(gold_labels, hkmeans.labels_))
print("Completeness: %0.3f" % metrics.completeness_score(gold_labels, hkmeans.labels_))
print("V-measure: %0.3f" % metrics.v_measure_score(gold_labels, hkmeans.labels_))
print("Adjusted Rand-Index: %.3f" % metrics.adjusted_rand_score(gold_labels, hkmeans.labels_))
print("Adjusted Mutual-Info: %.3f" % metrics.adjusted_mutual_info_score(gold_labels, hkmeans.labels_))

Expected result:

Homogeneity: 0.245
Completeness: 0.290
V-measure: 0.266
Adjusted Rand-Index: 0.099
Adjusted Mutual-Info: 0.263

See the Examples directory for more illustrations and a comparison against Lloyd's K-Means.

License

Copyright IBM Corporation 2021

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

If you would like to see the detailed LICENSE click here.

Authors

If you have any questions or issues you can create a new issue here.

References

  • Hartigan, John A. Clustering algorithms. Wiley series in probability and mathematical statistics: Applied probability and statistics. John Wiley & Sons, Inc., 1975.
  • Slonim, Noam, Ehud Aharoni, and Koby Crammer. "Hartigan's K-Means Versus Lloyd's K-Means—Is It Time for a Change?." Twenty-Third International Joint Conference on Artificial Intelligence. 2013.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hartigan-kmeans-0.0.6.tar.gz (136.7 kB view details)

Uploaded Source

Built Distributions

hartigan_kmeans-0.0.6-cp310-cp310-win_amd64.whl (189.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

hartigan_kmeans-0.0.6-cp310-cp310-win32.whl (180.6 kB view details)

Uploaded CPython 3.10 Windows x86

hartigan_kmeans-0.0.6-cp310-cp310-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

hartigan_kmeans-0.0.6-cp310-cp310-musllinux_1_1_i686.whl (1.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

hartigan_kmeans-0.0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (533.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

hartigan_kmeans-0.0.6-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (524.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

hartigan_kmeans-0.0.6-cp310-cp310-macosx_10_9_x86_64.whl (200.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

hartigan_kmeans-0.0.6-cp39-cp39-win_amd64.whl (189.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

hartigan_kmeans-0.0.6-cp39-cp39-win32.whl (180.6 kB view details)

Uploaded CPython 3.9 Windows x86

hartigan_kmeans-0.0.6-cp39-cp39-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

hartigan_kmeans-0.0.6-cp39-cp39-musllinux_1_1_i686.whl (1.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

hartigan_kmeans-0.0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (532.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

hartigan_kmeans-0.0.6-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (523.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

hartigan_kmeans-0.0.6-cp39-cp39-macosx_10_9_x86_64.whl (200.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

hartigan_kmeans-0.0.6-cp38-cp38-win_amd64.whl (189.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

hartigan_kmeans-0.0.6-cp38-cp38-win32.whl (180.5 kB view details)

Uploaded CPython 3.8 Windows x86

hartigan_kmeans-0.0.6-cp38-cp38-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

hartigan_kmeans-0.0.6-cp38-cp38-musllinux_1_1_i686.whl (1.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

hartigan_kmeans-0.0.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (534.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

hartigan_kmeans-0.0.6-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (525.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

hartigan_kmeans-0.0.6-cp38-cp38-macosx_10_9_x86_64.whl (198.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

hartigan_kmeans-0.0.6-cp37-cp37m-win_amd64.whl (188.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

hartigan_kmeans-0.0.6-cp37-cp37m-win32.whl (179.4 kB view details)

Uploaded CPython 3.7m Windows x86

hartigan_kmeans-0.0.6-cp37-cp37m-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

hartigan_kmeans-0.0.6-cp37-cp37m-musllinux_1_1_i686.whl (1.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

hartigan_kmeans-0.0.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (509.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

hartigan_kmeans-0.0.6-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (499.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

hartigan_kmeans-0.0.6-cp37-cp37m-macosx_10_9_x86_64.whl (198.4 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

hartigan_kmeans-0.0.6-cp36-cp36m-win_amd64.whl (197.9 kB view details)

Uploaded CPython 3.6m Windows x86-64

hartigan_kmeans-0.0.6-cp36-cp36m-win32.whl (185.4 kB view details)

Uploaded CPython 3.6m Windows x86

hartigan_kmeans-0.0.6-cp36-cp36m-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

hartigan_kmeans-0.0.6-cp36-cp36m-musllinux_1_1_i686.whl (1.1 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

hartigan_kmeans-0.0.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (509.4 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

hartigan_kmeans-0.0.6-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (499.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

hartigan_kmeans-0.0.6-cp36-cp36m-macosx_10_9_x86_64.whl (198.4 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file hartigan-kmeans-0.0.6.tar.gz.

File metadata

  • Download URL: hartigan-kmeans-0.0.6.tar.gz
  • Upload date:
  • Size: 136.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hartigan-kmeans-0.0.6.tar.gz
Algorithm Hash digest
SHA256 3c3589664047db8ecfa4f5f9e833f9002c131f7d54c2ed3c56f4773d89ba3f1d
MD5 62382ce7c61c360153316f3258789999
BLAKE2b-256 9ec9a00cee31f016fdf411a99c3af60942a3cd90d2aa8872bc6c7a2d87d074dd

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: hartigan_kmeans-0.0.6-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 189.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hartigan_kmeans-0.0.6-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 92c9d37535df726b49661849ead3474934eb2f5b5bec4ce04c118b0ffbde4d79
MD5 e60ea4580b835dfcab511cc68ba95694
BLAKE2b-256 4417da585385b455eac751188af8fc4acb91c32f06a8fc4711251f8f5f971d67

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp310-cp310-win32.whl.

File metadata

  • Download URL: hartigan_kmeans-0.0.6-cp310-cp310-win32.whl
  • Upload date:
  • Size: 180.6 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hartigan_kmeans-0.0.6-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 63a0c0cd4b46be1371514abfe38c18f2201593436f0649dcbb79d47d9af90c01
MD5 cb79d6e214cc23c70a7063aa798a396c
BLAKE2b-256 6bd78288135cea7279224db018de2442a254381e10d7d6ac6fd93fc0ba7ce700

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: hartigan_kmeans-0.0.6-cp310-cp310-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.10, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hartigan_kmeans-0.0.6-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 855c1b76cd44d173283a806ee3fe508fe4df1339b82cf3bc813586bc8b843f1f
MD5 51c9b5514905c4998281208f7cf59290
BLAKE2b-256 c78b6d2af9e0ac3da84ccaebe364bad0e8aae502db59f05aec523799100814e3

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

  • Download URL: hartigan_kmeans-0.0.6-cp310-cp310-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.10, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hartigan_kmeans-0.0.6-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ce850c77c7ba5cd132ae8fb72c9953fbbf9486f288fe52320ccfdfb5b3031d07
MD5 4da56a61bde1c19e08d72b6a8aa147aa
BLAKE2b-256 17c0041f4e5c86bc4278ce201c26465eb435ca47586010c58786bfb17f37a9c5

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hartigan_kmeans-0.0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d96ab98b11755ec6febfa601e6f163fb8d12a5c7cb5321f7db5bb74b05e7c0e
MD5 d0fe2edb69396cf933bdae8412752ff5
BLAKE2b-256 b2d1fa17de4b4c177d483844a44c9dabb9e5707ff53162ea9f6199c49cec093a

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hartigan_kmeans-0.0.6-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 db110ce7f646c40b03a50726169dcbacbe93ef75979ea0d86c3b21748a8ee541
MD5 f4e6a96124c26f651a00e99b582f5180
BLAKE2b-256 d30e4444f25bb188f46e0e65204fcf297fa3497cc6ece78f419f86966c567745

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: hartigan_kmeans-0.0.6-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 200.0 kB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hartigan_kmeans-0.0.6-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 378dd036df8daf1ba29e5c4358269b7953eb50a881afb10989b7e0f5966318c3
MD5 9ca35c5dbf41ad5f13e498c9a6acd95d
BLAKE2b-256 aa42e78403ec96b51b2b0a48913c012a33f3baa69b1f9d32ec299255faad48ee

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: hartigan_kmeans-0.0.6-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 189.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hartigan_kmeans-0.0.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e424395aeb24e05ff8917d694f38c0fa4efa9fe02704a4228608261e6a334376
MD5 eec2182c13a0d20f8309614063cbe83d
BLAKE2b-256 2a3d66eecdc4090123d1d842c03bae56be59b7a08b4c7f8fa1f70ecbb151dc1d

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp39-cp39-win32.whl.

File metadata

  • Download URL: hartigan_kmeans-0.0.6-cp39-cp39-win32.whl
  • Upload date:
  • Size: 180.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hartigan_kmeans-0.0.6-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 3a79645b88587e0ad5a5d23e99a919c1ec0764a46e747041c2d74b4941644d06
MD5 898aa7237700b73cb0ed9aebe4b67306
BLAKE2b-256 65ddf7078c6e5479d578d1ee063fca0ec7c2adc34eb126d0f07b9c9f98a667d4

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: hartigan_kmeans-0.0.6-cp39-cp39-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.9, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hartigan_kmeans-0.0.6-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1c387fe78514451577c0aed18e6f3a84bb3ee878db85767b2a24040cd5c0c40c
MD5 28b70347ea862a63d15e89aff57b1a86
BLAKE2b-256 8a81a3b1d82fd5e847763f4f4a36bdfa907fb4982baa4bfc6ab6bb0cce1419de

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

  • Download URL: hartigan_kmeans-0.0.6-cp39-cp39-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.9, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hartigan_kmeans-0.0.6-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5287e5a396b079f6538151397263200cabc75ae64095b3becf5a06098563e17d
MD5 b2464b60a45f86a1d814b43d5c7d99f5
BLAKE2b-256 1af7724ab7f9a6d367820550ce09b45daaddaa912697bb3b639b71abc4af4f03

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hartigan_kmeans-0.0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d0d714fc497b11ca9e193e386e16cf441755b689554216312b246338ca8bad0a
MD5 96d33390d1590da52e4defc10cc206f4
BLAKE2b-256 44650910628a5c4de1d36b642b98c0294ee9807847f969fed6834fd1a83498ee

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hartigan_kmeans-0.0.6-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 30c1f453a998bdf2c98c51d2c85f390f0dc5d9f94f374d22434d574ccca12d8a
MD5 abe8d27fdcffdd46e5ec35961db3babf
BLAKE2b-256 6e85cccfcec88dda79a09e610be5e0305203861f7badbcbfd37a27e5641eda32

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: hartigan_kmeans-0.0.6-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 200.0 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hartigan_kmeans-0.0.6-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 517fcb227b55835a1b0609e78a22275938a9c784c9399fce2f860ab09964b759
MD5 e97eede55fd8ed80a14db605d250e853
BLAKE2b-256 faa6f20fd418fd6edbc199703eb2b54e6e8c63f7239fe150ee405521c85025d7

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: hartigan_kmeans-0.0.6-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 189.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hartigan_kmeans-0.0.6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c94aaece34782401805817ae04c87f29f55531d415120ab7bf7156edeb0260a9
MD5 1714e82c629b25b9685c64f3cdf76e8d
BLAKE2b-256 4bc025283d37cfca171c571b78e6b7d5253b1315896f226ce9fb679dcf1f0664

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp38-cp38-win32.whl.

File metadata

  • Download URL: hartigan_kmeans-0.0.6-cp38-cp38-win32.whl
  • Upload date:
  • Size: 180.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hartigan_kmeans-0.0.6-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 c83a3715072b1ed2616154a3c4c2738e3546e4e19d18ffbdf3ff5a74ce654150
MD5 89acad7e24665f88b426231e7b996888
BLAKE2b-256 fb3eae13e28e38542851d8626435e96b84ce9be330ff70ea8e2e56331c47e674

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: hartigan_kmeans-0.0.6-cp38-cp38-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hartigan_kmeans-0.0.6-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ecaac4c89f27e39502844399abaf54994972ecbd3973745edd3b144975dd81cb
MD5 4edc2fa146ec9edfbce79108a9c37ebb
BLAKE2b-256 e8a9988c75c3734f02172e7e0276c54f99773b8076682d913c10f1e7bc646e62

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

  • Download URL: hartigan_kmeans-0.0.6-cp38-cp38-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hartigan_kmeans-0.0.6-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 7c9496fbaed431b3ce2ca42c8ea6f50c7879c954f4efb4e715053863510223c8
MD5 df53ee018115793f563bda0b2109c49c
BLAKE2b-256 0c5a373664b2e0ab78cfb40b2c814a933180028f1fbce53cf26df826d5193d4b

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hartigan_kmeans-0.0.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 289d3b43f0f30880a082312e495010493b18e3d7e3439ae6ff15c1ef8c60f194
MD5 35d09a81b9d230344ff1a665b6e50e74
BLAKE2b-256 ac911ef53e38683adfb705569cdeafe254c1decf571da6c9ba2079ee1cccbf69

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hartigan_kmeans-0.0.6-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4515bd9d87c14ab3ce6823029521156a79705519d6e6bed2ce00d74b45a2fd73
MD5 10ca17c867ce9bc1d9a96237274ab17a
BLAKE2b-256 2e9e1856827c5fd910588df65dfce5d563bf3eeca2d7ff50cb41ae2bf7dfdc51

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: hartigan_kmeans-0.0.6-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 198.2 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hartigan_kmeans-0.0.6-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d63d2fc11d671c10316dc525cb530a1f60b2d1066826a93afccae1f36769678a
MD5 149d561f6ffd996d8c2e5d7a1a377d18
BLAKE2b-256 6a21cd3f693863e0afd0145e1e79a64ca1c2e7319765b982bbdb2b1079fa2792

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: hartigan_kmeans-0.0.6-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 188.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hartigan_kmeans-0.0.6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 eec68b563664edf1b4a5c126b950cc4f5a588040797d6f22d2a1299d0ed754ca
MD5 4ecf48d52f54717bc0b300518b332c78
BLAKE2b-256 90dada0b0119c090e78166b282e9a11b8f5720a3013e5d0aa03b04b8bdb7be75

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp37-cp37m-win32.whl.

File metadata

  • Download URL: hartigan_kmeans-0.0.6-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 179.4 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hartigan_kmeans-0.0.6-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 257c8014cf0d18e4d0606d676e34267bb1ce41e630a931d611f9c3a757c9769d
MD5 d46560dc37841db2e5b161e3ab1978b5
BLAKE2b-256 723a3c911defcfa107555182ec290ac16a17f53d2a80fbd49b2b9c9c7d6eb08b

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: hartigan_kmeans-0.0.6-cp37-cp37m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hartigan_kmeans-0.0.6-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 087495ad31ddcd74b2e49880bce47d7f74b0dca98ee9e0ea4fd63ee2aed25390
MD5 d8eab4c5e33fe59f2aacd89b462551fa
BLAKE2b-256 5d04aeaf794e46beb8a0126ab1664f0522e149f7b09140d1e3165567c6402246

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

  • Download URL: hartigan_kmeans-0.0.6-cp37-cp37m-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hartigan_kmeans-0.0.6-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 fe574708f103346cfe5ea86e6d27f151eab950878bdb94f4f3d310c124666276
MD5 82f8061cb06942c984e364aab832ecce
BLAKE2b-256 95902ed439128be8afec6423f836a171356e4258c71fd90d2b21268350540f18

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hartigan_kmeans-0.0.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e7b996c881c2c516f9970ce927af33380c04758e70c9a58ff35b9c00388835d9
MD5 653fc092e530cf15ef83bafa7767bc24
BLAKE2b-256 d9a4c660538f76ff0b4091fd7df52c6df763e9dc3627fdafdad1cc16fe2caf32

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hartigan_kmeans-0.0.6-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 950720ceb129ee4c6d6eb84cde59d5585f7b6ad53a6f93499d40ece25da256cd
MD5 8d732493289a0d7de9d575f62441641e
BLAKE2b-256 2768303703c4e418257f189c391d4eb446223b994c0bd4554fd62eb92196feb1

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: hartigan_kmeans-0.0.6-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 198.4 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hartigan_kmeans-0.0.6-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e61eb56cd9c281d896a38df0fb7d86c6461d2474b266ffcc01245e430604aefd
MD5 66d85e15d3d72ca5c618a6f6e02b10aa
BLAKE2b-256 dcbd3938cc93edc232323b217f6580f58ca2f682d7e8c12d3a54b77453f742b1

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: hartigan_kmeans-0.0.6-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 197.9 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hartigan_kmeans-0.0.6-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ff5e92cc62b67ff419ce67feff81efc5e3dbbefeb6a7034a57de58b0197c38c3
MD5 dfc656351c274e31371ca08ff4e274c1
BLAKE2b-256 a4103a678372b360f5cea68c40db71559deec74e03bb9db4e52a30e20d573203

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp36-cp36m-win32.whl.

File metadata

  • Download URL: hartigan_kmeans-0.0.6-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 185.4 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hartigan_kmeans-0.0.6-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 ed738385da61b076a4580324bf1fdd2384938cd81f95a96dc3bb35d388fd447b
MD5 b416091be7467db7f039fc3c7021cdde
BLAKE2b-256 a003ed342b2016f4bff8f8302416c9f8f84636ad8d3d5241f593383743174da1

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: hartigan_kmeans-0.0.6-cp36-cp36m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hartigan_kmeans-0.0.6-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3ea2a3aee6ee834c196461cd9a78f6011fdb1a82bf95be6db210fbaece9a9966
MD5 499e9c14945e6ec48466e27a4c17b8c1
BLAKE2b-256 66e63875c976831bd3ece5a9742034f4d82c86d7dd5ac7a773430b26ce982f37

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

  • Download URL: hartigan_kmeans-0.0.6-cp36-cp36m-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hartigan_kmeans-0.0.6-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4518fd21807ad06ba710650e2855fd30a7ade0000fc61f983e5c16d1b7e8f42c
MD5 30f3c5fc7e77f4cea43fb9da31318fb2
BLAKE2b-256 c3bf5313534a8b5dd7bd25c20faacabad4f39bd34b1f15878bd7e61f815f89bb

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for hartigan_kmeans-0.0.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f40fc69cbadcadb4865d0218b26c9ad626f418ac1538c9ae13873ec471af9c9f
MD5 76fedaa87566ab08d5ad6ad90e1474aa
BLAKE2b-256 56bfbb2c066b130c9352f1d622a01b68eb49cd36c4c524e5d6126741c118f247

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for hartigan_kmeans-0.0.6-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f1b3e737b0fda06b1d16b6fc91b3364b04b8b1275f3453a61d9846db8838b462
MD5 44070c7e732cdf44fa154b812d53cd49
BLAKE2b-256 36dcc0d7af799fbed665f9711373749f88c502ff094b3974de78f39ec4c7cfa9

See more details on using hashes here.

File details

Details for the file hartigan_kmeans-0.0.6-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: hartigan_kmeans-0.0.6-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 198.4 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for hartigan_kmeans-0.0.6-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bf4407e2a7ee569a7ae56b194a0f6536ee1063963e4c698afe57d40d0cc4fd8a
MD5 df4c35b5484c951ba4e9b55f45c36f80
BLAKE2b-256 8384f786dc9e7180dbb7bce5e91574399f112e8b0d2cfe6e1566ab3404879a23

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page