Skip to main content
This is a pre-production deployment of Warehouse. Changes made here affect the production instance of PyPI (
Help us improve Python packaging - Donate today!

InvertedIndex implementation using hash lists (dictionaries)

Project Description

Fast and simple InvertedIndex implementation using hash lists (python dictionaries).


hashedindex provides a simple to use inverted index structure that is flexible enough to work with all kinds of use cases.

Basic Usage:

import hashedindex
index = hashedindex.HashedIndex()

index.add_term_occurrence('hello', 'document1.txt')
index.add_term_occurrence('world', 'document1.txt')

Counter({'document1.txt': 1})

{'hello': Counter({'document1.txt': 1}),
'world': Counter({'document1.txt': 1})}

example = 'The Quick Brown Fox Jumps Over The Lazy Dog'

for term in example.split():
    index.add_term_occurrence(term, 'document2.txt')

The hashedindex is not limited to strings, any hashable object can be indexed.

index.add_term_occurrence('foo', 10)
index.add_term_occurrence(('fire', 'fox'), 90.2)

{'foo': Counter({10: 1}), ('fire', 'fox'): Counter({90.2: 1})}

Text Parsing

The hashedindex module comes included with a powerful textparser module with methods to split text into tokens.

from hashedindex import textparser
list(textparser.word_tokenize("hello cruel world"))
[('hello',), ('cruel',), ('world',)]

Tokens are wrapped within tuples due to the ability to specify any number of n-grams required:

list(textparser.word_tokenize("Life is about making an impact, not making an income.", ngrams=2))
[(u'life', u'is'), (u'is', u'about'), (u'about', u'making'), (u'making', u'an'), (u'an', u'impact'),
 (u'impact', u'not'), (u'not', u'making'), (u'making', u'an'), (u'an', u'income')]

Take a look at the function’s docstring for information on how to use stopwords, specify a min_length or ignore_numeric terms.

Integration with Numpy and Pandas

The initial idea behind hashedindex is to provide a really quick and easy way of generating matrices for machine learning with the additional use of numpy, pandas and scikit-learn. For example:

from hashedindex import textparser
import hashedindex
import numpy as np

index = hashedindex.HashedIndex()

documents = ['spam1.txt', 'ham1.txt', 'spam2.txt']
for doc in documents:
    with open(doc, 'r') as fp:
         for term in textparser.word_tokenize(
             index.add_term_occurrence(term, doc)

# You *probably* want to use scipy.sparse.csr_matrix for better performance
X = np.as_matrix(index.generate_feature_matrix(mode='tfidf'))

y = []
for doc in index.documents():
    y.append(1 if 'spam' in doc else 0)
y = np.asarray(doc)

from sklearn.svm import SVC
classifier = SVC(kernel='linear'), y)

You can also extend your feature matrix to a more verbose pandas DataFrame:

import pandas as pd
X  = index.generate_feature_matrix(mode='tfidf')
df = pd.DataFrame(X, columns=index.terms(), index=index.documents())

All methods within the code have high test coverage so you can be sure everything works as expected.

Found a bug? Nice, a bug found is a bug fixed. Open an Issue or better yet, open a pull request.


0.1.0 (2015-01-11)

  • First release on PyPI.
Release History

Release History

This version
History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


Download Files

Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
hashedindex-0.4.1.tar.gz (20.2 kB) Copy SHA256 Checksum SHA256 Source Dec 21, 2017

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting