This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description

Fast and simple InvertedIndex implementation using hash lists (python dictionaries).

Features

hashedindex provides a simple to use inverted index structure that is flexible enough to work with all kinds of use cases.

Basic Usage:

import hashedindex
index = hashedindex.HashedIndex()

index.add_term_occurrence('hello', 'document1.txt')
index.add_term_occurrence('world', 'document1.txt')

index.get_documents('hello')
Counter({'document1.txt': 1})

index.items()
{'hello': Counter({'document1.txt': 1}),
'world': Counter({'document1.txt': 1})}

example = 'The Quick Brown Fox Jumps Over The Lazy Dog'

for term in example.split():
    index.add_term_occurrence(term, 'document2.txt')

The hashedindex is not limited to strings, any hashable object can be indexed.

index.add_term_occurrence('foo', 10)
index.add_term_occurrence(('fire', 'fox'), 90.2)

index.items()
{'foo': Counter({10: 1}), ('fire', 'fox'): Counter({90.2: 1})}

Text Parsing

The hashedindex module comes included with a powerful textparser module with methods to split text into tokens.

from hashedindex import textparser
list(textparser.word_tokenize("hello cruel world"))
[('hello',), ('cruel',), ('world',)]

Tokens are wrapped within tuples due to the ability to specify any number of n-grams required:

list(textparser.word_tokenize("Life is about making an impact, not making an income.", ngrams=2))
[(u'life', u'is'), (u'is', u'about'), (u'about', u'making'), (u'making', u'an'), (u'an', u'impact'),
 (u'impact', u'not'), (u'not', u'making'), (u'making', u'an'), (u'an', u'income')]

Take a look at the function’s docstring for information on how to use stopwords, specify a min_length or ignore_numeric terms.

Integration with Numpy and Pandas

The initial idea behind hashedindex is to provide a really quick and easy way of generating matrices for machine learning with the additional use of numpy, pandas and scikit-learn. For example:

from hashedindex import textparser
import hashedindex
import numpy as np

index = hashedindex.HashedIndex()

documents = ['spam1.txt', 'ham1.txt', 'spam2.txt']
for doc in documents:
    with open(doc, 'r') as fp:
         for term in textparser.word_tokenize(fp.read()):
             index.add_term_occurrence(term, doc)

# You *probably* want to use scipy.sparse.csr_matrix for better performance
X = np.as_matrix(index.generate_feature_matrix(mode='tfidf'))

y = []
for doc in index.documents():
    y.append(1 if 'spam' in doc else 0)
y = np.asarray(doc)

from sklearn.svm import SVC
classifier = SVC(kernel='linear')
classifier.fit(X, y)

You can also extend your feature matrix to a more verbose pandas DataFrame:

import pandas as pd
X  = index.generate_feature_matrix(mode='tfidf')
df = pd.DataFrame(X, columns=index.terms(), index=index.documents())

All methods within the code have high test coverage so you can be sure everything works as expected.

Found a bug? Nice, a bug found is a bug fixed. Open an Issue or better yet, open a pull request.

History

0.1.0 (2015-01-11)

  • First release on PyPI.
Release History

Release History

0.4.0

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.3.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2.2

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2.1

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.3

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
hashedindex-0.4.0.tar.gz (20.0 kB) Copy SHA256 Checksum SHA256 Source Jul 13, 2015

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS HPE HPE Development Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting