Skip to main content

hatyan is a tidal analysis and prediction tool of Rijkswaterstaat

Project description

pytest-devenv pytest-py39 sigrid-publish RPM-build

hatyan

hatyan is a Python program for tidal analysis and prediction, based on the FORTRAN version. Copyright (C) 2019-2021 Rijkswaterstaat. Maintained by Deltares, contact: Jelmer Veenstra (jelmer.veenstra@deltares.nl). Source code available at: https://github.com/Deltares/hatyan

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this program. If not, see https://www.gnu.org/licenses/.

Installation

Install hatyan OPTION 1: Create a separate python environment and install from github (later maybe also via PyPI):

  • download Anaconda 64 bit Python 3.7 (or higher) from https://www.anaconda.com/distribution/#download-section (miniconda should also be sufficient, but this is not yet tested)
  • install it with the recommended settings, but check 'add Anaconda3 to my PATH environment variable' if you want to use conda from the windows command prompt instead of anaconda prompt
  • open command window (or anaconda prompt)
  • optional: conda create --name hatyan_env -c conda-forge python=3.7 git spyder -y (or higher python version)
  • optional: conda activate hatyan_env
  • python -m pip install git+https://github.com/Deltares/hatyan (this command installs hatyan and all required packages)
  • to update hatyan: python -m pip install --upgrade git+https://github.com/Deltares/hatyan
  • conda deactivate
  • to remove venv when necessary: conda remove -n hatyan_env --all

Install hatyan OPTION 2: get and install RPM on CentOS/RHEL

  • get the latest rpm file (see developer information for building procedure)
  • install hatyan on CentOS: rpm -i hatyan_python-2.2.30-1.x86_64.rpm
  • upgrade hatyan on CentOS: rpm -U hatyan_python-2.2.31-1.x86_64.rpm
  • installing the RPM results in a hatyan command in linux, this activates a Python virtual environment and sets necessary Qt environment variables. It creates a folder with a python environment hatyan_env, doc en tests (/opt/hatyan_python/hatyan_env/) and a file that provides the hatyan command (/usr/bin/hatyan)
  • check version: hatyan --version
  • test installation: hatyan /opt/hatyan_python/tests/configfiles/predictie_2019_19Ycomp4Ydia_VLISSGN_interactive.py
  • this should result in several interactive figures popping up, described in chapter 5 (Quick start guide) of the hatyan user manual (gebruikershandleiding).
  • if you see the message "RuntimeError: Invalid DISPLAY variable", restart the MobaXterm connection and try again.
  • the followning warning can be ignored: "QXcbConnection: XCB error: 145 (Unknown), sequence: 171, resource id: 0, major code: 139 (Unknown), minor code: 20". To avoid it, disable the extension RANDR in Mobaxterm settings (Settings > Configuration > X11)

Getting started

Documentation is available on Github (replace 'main' in the url with any tagname to view older versions) and there is background information in the doc folder. Copy the code below to your own script to get started. For more examples, check the configfiles folder.

import os
import datetime as dt
import hatyan

#defining a list of the components to be analysed (can also be 'half_year' and others, 'year' contains 94 components and the mean H0)
const_list = hatyan.get_const_list_hatyan('year')

#reading and editing time series, results in a pandas DataFrame a 'values' column (water level in meters) and a pd.DatetimeIndex as index (timestamps as datetime.datetime)
file_data_meas = os.path.join(r'n:\\Deltabox\\Bulletin\\veenstra\\VLISSGN_waterlevel_20101201_20140101.noos')
times_ext = [dt.datetime(2012,1,1),dt.datetime(2013,1,1)]
timestep_min = 10
ts_meas = hatyan.readts_noos(filename=file_data_meas)
ts_meas = hatyan.resample_timeseries(ts_meas, timestep_min=timestep_min)
ts_meas = hatyan.crop_timeseries(ts=ts_meas, times_ext=times_ext)

#tidal analysis and plotting of results. commented: saving figure  
comp_frommeas = hatyan.get_components_from_ts(ts=ts_meas, const_list=const_list, nodalfactors=True, xfac=True, return_allyears=False, fu_alltimes=True, analysis_peryear=False)
fig,(ax1,ax2) = hatyan.plot_components(comp=comp_frommeas)
#fig.savefig('components_VLISSGN_4Y.png')

#tidal prediction and plotting of results. commented: saving figure and writing to netCDF
ts_prediction = hatyan.prediction(comp=comp_frommeas, nodalfactors=True, xfac=True, fu_alltimes=True, times_ext=times_ext, timestep_min=timestep_min)
fig, (ax1,ax2) = hatyan.plot_timeseries(ts=ts_prediction, ts_validation=ts_meas)
ax1.legend(['prediction','measurement','difference','mean of prediction'])
ax2.set_ylim(-0.5,0.5)
#fig.savefig('prediction_%im_VLISSGN_measurements'%(timestep_min))

#calculation of HWLW and plotting of results. commented: saving figure
ts_ext_prediction = hatyan.calc_HWLW(ts=ts_prediction)
fig, (ax1,ax2) = hatyan.plot_timeseries(ts=ts_prediction, ts_ext=ts_ext_prediction)
#fig.savefig('prediction_%im_VLISSGN_HWLW'%(timestep_min))
#hatyan.write_tsnetcdf(ts=ts_prediction, ts_ext=ts_ext_prediction, station='VLISSGN', vertref='NAP', filename='prediction_%im_VLISSGN.nc'%(timestep_min))

Information for developers

Create a python environment hatyan_env and install hatyan as developer:

  • download Anaconda 64 bit Python 3.7 (or higher) from https://www.anaconda.com/distribution/#download-section (miniconda should also be sufficient, but this is not yet tested)
  • install it with the recommended settings, but check 'add Anaconda3 to my PATH environment variable' if you want to use conda from the windows command prompt instead of anaconda prompt
  • Download git from https://git-scm.com/download/win, install with default settings
  • open command window in a folder where you want to clone the hatyan github repo, e.g. C:\DATA
  • git clone https://github.com/Deltares/hatyan hatyan_github (repos gets cloned in C:\DATA\hatyan_github, this is a checkout of the master branch)
  • create a branch called work_yourname on https://github.com/Deltares/hatyan
  • open git bash window in local hatyan folder (e.g. C:\DATA\hatyan_github)
  • git remote update origin --prune (update local branch list)
  • git checkout work_yourname (checkout your branch, never do anything while the master is selected)
  • update your branch if main has been updated: add+commit+push everything in branch first, git checkout main, git pull, git checkout development, git merge main -m '', git push origin development
  • open command line and navigate to hatyan local folder, e.g. C:\\DATA\\hatyan_github
  • conda env create -f environment.yml (This yml file installs Python 3.6.12 since that is the latest available Python on RHEL)
  • conda info --envs (should show hatyan_env virtual environment in the list)
  • conda activate hatyan_env
  • python -m pip install -e . -r requirements_dev.txt (pip developer mode, also install all packages in requirements_dev.txt containing CentOS tested libraries, linked via setup.py)
  • conda deactivate
  • to remove hatyan_env when necessary: conda remove -n hatyan_env --all

Increase the hatyan version number:

  • open command line and navigate to hatyan local folder, e.g. C:\\DATA\\hatyan_github
  • conda activate hatyan_env
  • bumpversion major or bumpversion minor or bumpversion patch
  • the hatyan version number of all relevant files will be updated, as stated in setup.cfg

Running the testbank:

  • open command line and navigate to hatyan local folder, e.g. C:\\DATA\\hatyan_github
  • conda activate hatyan_env
  • pytest (runs all tests)
  • pytest -m unittest
  • pytest -m systemtest
  • pytest -m acceptance (runs the acceptance tests, which are the scripts in the configfiles folder)
  • pytest -m "not acceptance" (excludes all acceptance tests)
  • the following arguments are automatically provided via pytest.ini: -v --tb=short, add --cov=hatyan for a coverage summary

Generate documentation:

  • open command line and navigate to hatyan local folder, e.g. C:\\DATA\\hatyan_github
  • conda activate hatyan_env
  • python scripts/generate_documentation.py

Generate RPM (RHEL/CentOS installer):

  • preparation: activate environment, run testbank, check acceptance test output and make backup of results, generate documentation, update history.rst, commit changes, bumpversion minor, create tag on github
  • use the script in scripts/hatyan_rpmbuild.sh (for instance on the CentOS7 Deltares buildserver)
  • this script uses the rpmbuild command and the specfile to generate an RPM on a CentOS/RHEL machine with the correct dependencies installed
  • rpmbuild uses the specfile scripts/hatyan_python-latest.spec as input
  • the dependencies for the RPM are documented in the specfile
  • the required Python libraries are documented in requirements_dev.txt: these are fixed versions, which is at least relevant for sip, since it needs to be compatible with pyqt5==5.7.1 for Qt5 plots
  • additionally, the library pyqt5==5.7.1 (hardcoded in specfile) is for interative QT5 plots. There is a newer version but it requires glibc >2.14, while 2.12 is the highest version available on CentOS/RedHat 6)
  • to test hatyan on CentOS without installing an RPM: use the script scripts/hatyan_rpmbuild_nobinaries.sh, this creates a comparable setup in the home directory and a ~/hatyan_fromhome.sh file comparable to hatyan command. If you get an error about X11-forwarding, first try the xterm command.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hatyan-2.3.0.tar.gz (72.1 kB view details)

Uploaded Source

Built Distribution

hatyan-2.3.0-py3-none-any.whl (97.9 kB view details)

Uploaded Python 3

File details

Details for the file hatyan-2.3.0.tar.gz.

File metadata

  • Download URL: hatyan-2.3.0.tar.gz
  • Upload date:
  • Size: 72.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.63.0 importlib-metadata/4.6.1 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.12

File hashes

Hashes for hatyan-2.3.0.tar.gz
Algorithm Hash digest
SHA256 67e335fd9243c5ecab34ec6a898fbb57c6e3811f10f73290728fd67beded0795
MD5 46b9870d998e1930d99d3ef40a580170
BLAKE2b-256 6f3c89271d9c39eb7a23b32558dc0147895cc8f1958d1dd92cac634371c6bbaf

See more details on using hashes here.

File details

Details for the file hatyan-2.3.0-py3-none-any.whl.

File metadata

  • Download URL: hatyan-2.3.0-py3-none-any.whl
  • Upload date:
  • Size: 97.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.63.0 importlib-metadata/4.6.1 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.12

File hashes

Hashes for hatyan-2.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 0d196a6beafba8fdadd00fb7a40236a7590f2f7d5149c34aa8f25964ac66cc0a
MD5 72d81b6a0544473336dd79e2eca63b66
BLAKE2b-256 5df8676996f24679fb221801ea982e21a2ec048077aa9e79a53cef722c3b804c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page