Skip to main content

hatyan is a tidal analysis and prediction tool of Rijkswaterstaat

Project description

pytest-devenv pytest-py39 sigrid-publish rpm-build-core pypi-upload

hatyan

hatyan is a Python program for tidal analysis and prediction, based on the FORTRAN version. Copyright (C) 2019-2021 Rijkswaterstaat. Maintained by Deltares, contact: Jelmer Veenstra (jelmer.veenstra@deltares.nl). Source code available at: https://github.com/Deltares/hatyan

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this program. If not, see https://www.gnu.org/licenses/.

Installation

Install hatyan OPTION 1: Install from pip/github in an existing or new environment:

  • optional: download Anaconda 64 bit Python 3.7 (or higher) from https://www.anaconda.com/distribution/#download-section
  • open command window (or anaconda prompt)
  • optional: conda create --name hatyan_env -c conda-forge python=3.7 git spyder -y (or higher python version)
  • optional: conda activate hatyan_env
  • python -m pip install hatyan (this installs hatyan and all required packages from PyPI, add a version like ==2.3.0 if you require a specific version. Optionally add --upgrade)
  • alternatively: python -m pip install git+https://github.com/Deltares/hatyan (this installs hatyan and all required packages from github, add a tag like @v2.3.0, @main or @development if you require a specific release/branch. Optionally add --upgrade)

Install hatyan OPTION 2: get and install RPM on CentOS/RHEL

  • get the latest rpm file (see developer information for building procedure)
  • install hatyan on CentOS: rpm -i hatyan_python-2.2.30-1.x86_64.rpm
  • upgrade hatyan on CentOS: rpm -U hatyan_python-2.2.31-1.x86_64.rpm
  • installing the RPM results in a hatyan command in linux, this activates a Python virtual environment and sets necessary Qt environment variables. It creates a folder with a python environment hatyan_env, doc en tests (/opt/hatyan_python/hatyan_env/) and a file that provides the hatyan command (/usr/bin/hatyan)
  • check version: hatyan --version
  • test installation: hatyan /opt/hatyan_python/tests/examples/predictie_2019_19Ycomp4Ydia_VLISSGN_interactive.py (or use the hatyan --test shortcut)
  • this should result in several interactive figures popping up, described in chapter 5 (Quick start guide) of the hatyan user manual (gebruikershandleiding).
  • if you see the message "RuntimeError: Invalid DISPLAY variable", restart the MobaXterm connection and try again.
  • the followning warning can be ignored: "QXcbConnection: XCB error: 145 (Unknown), sequence: 171, resource id: 0, major code: 139 (Unknown), minor code: 20". To avoid it, disable the extension RANDR in Mobaxterm settings (Settings > Configuration > X11)

Getting started

  • HTML-documentation is available on Github (replace 'main' in the url with any tagname to view older versions)
  • background information is available in the docs folder.
  • copy the code below to your own script to get started (or run it on Colab).
  • for more examples, check the examples folder.
import datetime as dt
import pandas as pd
from netCDF4 import Dataset, num2date
import hatyan
hatyan.close('all')

#defining a list of the components to be analysed (can also be 'half_year' and others, 'year' contains 94 components and the mean H0)
const_list = hatyan.get_const_list_hatyan('year')

#reading and editing time series, results in a pandas DataFrame a 'values' column (water level in meters) and a pd.DatetimeIndex as index (timestamps as datetime.datetime)
file_data_meas = 'http://uhslc.soest.hawaii.edu:80/opendap/rqds/global/hourly/h825a.nc' #Cuxhaven dataset from UHSLC database #os.path.join(r'n:\\Deltabox\\Bulletin\\veenstra\\VLISSGN_waterlevel_20101201_20140101.noos')
times_ext = [dt.datetime(2017,1,1),dt.datetime(2018,12,31)]
timestep_min = 10
ts_data = Dataset(file_data_meas)
ts_data_values = ts_data['sea_level'][0,-18000:]/1000-5 #correct from mm to meters and for 5m offset
ts_data_times = num2date(ts_data['time'][-18000:],units=ts_data['time'].units, only_use_cftime_datetimes=False)
ts_meas = pd.DataFrame({'values':ts_data_values},index=ts_data_times)
#ts_meas = hatyan.resample_timeseries(ts_meas, timestep_min=60) #resampling only works well when timesteps are rounded to seconds
ts_meas = hatyan.crop_timeseries(ts=ts_meas, times_ext=times_ext)

#tidal analysis and plotting of results. commented: saving figure  
comp_frommeas, comp_allyears = hatyan.get_components_from_ts(ts=ts_meas, const_list=const_list, nodalfactors=True, return_allyears=True, fu_alltimes=True, analysis_peryear=True)
fig,(ax1,ax2) = hatyan.plot_components(comp=comp_frommeas, comp_allyears=comp_allyears)
#fig.savefig('components.png')

#tidal prediction and plotting of results. commented: saving figure and writing to netCDF
ts_prediction = hatyan.prediction(comp=comp_frommeas, nodalfactors=True, fu_alltimes=True, times_ext=times_ext, timestep_min=timestep_min)
fig, (ax1,ax2) = hatyan.plot_timeseries(ts=ts_prediction, ts_validation=ts_meas)
ax1.legend(['prediction','measurement','difference','mean of prediction'])
ax2.set_ylim(-0.5,0.5)
#fig.savefig('prediction.png')

#calculation of HWLW and plotting of results. commented: saving figure
ts_ext_meas = hatyan.calc_HWLW(ts=ts_meas)
ts_ext_prediction = hatyan.calc_HWLW(ts=ts_prediction)
fig, (ax1,ax2) = hatyan.plot_timeseries(ts=ts_prediction, ts_validation=ts_meas, ts_ext=ts_ext_prediction, ts_ext_validation=ts_ext_meas)
ax1.set_xlim([dt.datetime(2018,6,1),dt.datetime(2018,7,1)])
ax2.set_ylim(-1,1)
#fig.savefig('prediction_HWLW.png')

fig, ax = hatyan.plot_HWLW_validatestats(ts_ext=ts_ext_prediction, ts_ext_validation=ts_ext_meas)
#fig.savefig('prediction_HWLW_validatestats.png')
#hatyan.write_tsnetcdf(ts=ts_prediction, ts_ext=ts_ext_prediction, station='Cuxhaven', vertref='MSL', filename='prediction.nc')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hatyan-2.5.64.tar.gz (100.3 kB view details)

Uploaded Source

Built Distribution

hatyan-2.5.64-py3-none-any.whl (96.3 kB view details)

Uploaded Python 3

File details

Details for the file hatyan-2.5.64.tar.gz.

File metadata

  • Download URL: hatyan-2.5.64.tar.gz
  • Upload date:
  • Size: 100.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for hatyan-2.5.64.tar.gz
Algorithm Hash digest
SHA256 76ef25e3d11df606b89e59638fefae49899a92bcf6abfa0ab6a24e1f24087bb6
MD5 3653870856f5b59497fc75e9a6466988
BLAKE2b-256 870ddc1cd203c41ba696791cfe35f773bcded2daf2044957edcbfbff28078bf3

See more details on using hashes here.

File details

Details for the file hatyan-2.5.64-py3-none-any.whl.

File metadata

  • Download URL: hatyan-2.5.64-py3-none-any.whl
  • Upload date:
  • Size: 96.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for hatyan-2.5.64-py3-none-any.whl
Algorithm Hash digest
SHA256 4f18c116ff5f5c4ec4b9aee609e13b4562f8ccc6e90a5dc80d1f035842bbf0b2
MD5 9b7aa414137f443ef35cb647f7f7272c
BLAKE2b-256 d36800a8193c96b6759e2ef304db56b28a2178a9b51e0337cb1686ba23de3f49

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page