Skip to main content

Define the account and the party to use on bank statement line with a machine learning

Project description

This module add a machine learning on the account.bank.statement to predict the party and the account to use for a new line.

Install

Dependencies for ArchLinux

sudo pacman -S cairo pkgconf gobject-introspection

Dependencies for debian

sudo apt-get install libcairo2-dev libgirepository1.0-dev

Install the package

# installs python deps
pip install hb_bank_statement_machine_learning
# install the module
trytond-admin -u hb_bank_statement_machine_learning --activate-dependencies

Install the db by hb-tryton-devtools

pip install git+https://gitlab.com/hashbangfr/tryton-modules/hb_tryton_devtools.git#egg=hb_tryton_devtools
export TRYTON_DATABASE_URI=postgresql:///
export TRYTON_DATABASE_NAME=test
hb-tryton-admin create-db --modules hb_bank_statement_machine_learning

Test package

The package need pytest and hb-tryton-devtools

pip install pytest pytest-cov
pip install git+ssh://git@gitlab.com/hashbangfr/tryton-modules/hb_tryton_devtools.git#egg=hb_tryton_devtools

Run the test with pytest with environ variable

export TRYTON_DATABASE_URI=postgresql:///
export TRYTON_DATABASE_NAME=test
pytest hb_bank_statement_machine_learning/tests

Low level

The machine learning is added on the acount.statement.line, the machine learning is based on the field number on the line, this field must be filled

pool = Pool()
Line = pool.get('account.statement.line')
line = Line()
line.number = 'My number'
line.set_account_and_party_from_ml()
assert line.party
assert line.account

Usage

An on_change method on the field number exist to predict the fields party and account from the interface

CHANGELOG

1.0.0 (2022-05-18)

  • Used cache from trytond

0.1.0 (2021-09-28)

  • Implemented the machine learning

  • Implemented the on change method on the fields number

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file hb_bank_statement_machine_learning-1.0.0.tar.gz.

File metadata

File hashes

Hashes for hb_bank_statement_machine_learning-1.0.0.tar.gz
Algorithm Hash digest
SHA256 b99208bb13ecab8af9cc20bf31a50481b1a538f46a2568aae583b63e1c6a551a
MD5 23d52343f49319ad314c30fb364f3a53
BLAKE2b-256 f8eb382c365768635402f09aef66774560ac707fa8a7ff9c506651759649327b

See more details on using hashes here.

File details

Details for the file hb_bank_statement_machine_learning-1.0.0-py3-none-any.whl.

File metadata

File hashes

Hashes for hb_bank_statement_machine_learning-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 9864d4d6f57f4e89fd987b7198ad5abb35cb255229c9dd524cf382591d3cd8c1
MD5 5e8590b00560e36f14c706b586a21753
BLAKE2b-256 07f42bd89b5de6a66863ef3e130e742d7aeca6aa2b30861d0f1cde1f876aeeb3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page