Skip to main content

!Alpha Version! - This repository contains the backend server for the nova annotation ui (https://github.com/hcmlab/nova)

Project description

Description

This repository contains code to make datasets stored on th corpora network drive of the chair compatible with the tensorflow dataset api .

Currently available Datasets

Dataset Status Url
ckplus http://www.iainm.com/publications/Lucey2010-The-Extended/paper.pdf
affectnet http://mohammadmahoor.com/affectnet/
faces https://faces.mpdl.mpg.de/imeji/
nova_dynamic https://github.com/hcmlab/nova
audioset https://research.google.com/audioset/
is2021_ess -
librispeech https://www.openslr.org/12

Example Usage

import os
import tensorflow as tf
import tensorflow_datasets as tfds
import hcai_datasets
from matplotlib import pyplot as plt

# Preprocessing function
def preprocess(x, y):
  img = x.numpy()
  return img, y

# Creating a dataset
ds, ds_info = tfds.load(
  'hcai_example_dataset',
  split='train',
  with_info=True,
  as_supervised=True,
  builder_kwargs={'dataset_dir': os.path.join('path', 'to', 'directory')}
)

# Input output mapping
ds = ds.map(lambda x, y: (tf.py_function(func=preprocess, inp=[x, y], Tout=[tf.float32, tf.int64])))

# Manually iterate over dataset
img, label = next(ds.as_numpy_iterator())

# Visualize
plt.imshow(img / 255.)
plt.show()

Example Usage Nova Dynamic Data

import os
import hcai_datasets
import tensorflow_datasets as tfds
from sklearn.svm import LinearSVC
import numpy as np
from sklearn.calibration import CalibratedClassifierCV
import warnings
warnings.simplefilter("ignore")

## Load Data
ds, ds_info = tfds.load(
  'hcai_nova_dynamic',
  split='dynamic_split',
  with_info=True,
  as_supervised=True,
  data_dir='.',
  read_config=tfds.ReadConfig(
    shuffle_seed=1337
  ),
  builder_kwargs={
    # Database Config
    'db_config_path': 'nova_db.cfg',
    'db_config_dict': None,

    # Dataset Config
    'dataset': '<dataset_name>',
    'nova_data_dir': os.path.join('C:', 'Nova', 'Data'),
    'sessions': ['<session_name>'],
    'roles': ['<role_one>', '<role_two>'],
    'schemes': ['<label_scheme_one'],
    'annotator': '<annotator_id>',
    'data_streams': ['<stream_name>'],

    # Sample Config
    'frame_step': 1,
    'left_context': 0,
    'right_context': 0,
    'start': None,
    'end': None,
    'flatten_samples': False, 
    'supervised_keys': ['<role_one>.<stream_name>', '<scheme_two>'],

    # Additional Config
    'clear_cache' : True
  }
)

data_it = ds.as_numpy_iterator()
data_list = list(data_it)
data_list.sort(key=lambda x: int(x['frame'].decode('utf-8').split('_')[0]))
x = [v['<stream_name>'] for v in data_list]
y = [v['<scheme_two'] for v in data_list]

x_np = np.ma.concatenate( x, axis=0 )
y_np = np.array( y )

linear_svc = LinearSVC()
model = CalibratedClassifierCV(linear_svc,
                               method='sigmoid',
                               cv=3)
print('train_x shape: {} | train_x[0] shape: {}'.format(x_np.shape, x_np[0].shape))
model.fit(x_np, y_np)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

File details

Details for the file hcai_datasets_nightly-0.1.1.dev202202071415-py3-none-any.whl.

File metadata

File hashes

Hashes for hcai_datasets_nightly-0.1.1.dev202202071415-py3-none-any.whl
Algorithm Hash digest
SHA256 1e8ab3e1490dfa015c00077da5155b65bca9a325f36d29a66f86ebd6a6616e1a
MD5 efa57dbf12820e615101f913b0e41c30
BLAKE2b-256 2292049cfebc2daa77d96b8abed0b78d24d8426c0ea23015fa049be42c6aa96d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page