Skip to main content

Python library for Hyperdimensional Computing

Project description

Hyperdimensional Computing Library

GitHub license pypi version tests status PRs Welcome

This is a Python library for Hyperdimensional Computing.

  • Easy-to-use: This library makes it painless to develop a wide range of Hyperdimensional Computing (HDC) applications and algorithms. For someone new to the field we provide Pythonic abstractions and examples to get you started fast. For the experienced researchers we made the library modular by design, giving you endless flexibility to prototype new ideas in no-time.
  • Performant: The library is build on top of the high-performance PyTorch library, giving you optimized tensor execution without the headaches. Moreover, PyTorch makes it effortless to accelerate your code on a GPU.

Installation

The library is hosted on PyPi and Conda, use one of the following commands to install:

pip install hdc
conda install -c conda-forge hdc

Documentation

You can find the library's documentation on the website.

Examples

We have several examples in the repository. Here is a simple one to get you started:

import hdc
import torch

d = 10000  # number of dimensions

### create a hypervector for each symbol
# keys for each field of the dictionary: fruit, weight, and season
keys = hdc.functional.random_hv(3, d)
# fruits are: apple, lemon, mango
fruits = hdc.functional.random_hv(3, d)
# there are 10 weight levels
weights = hdc.functional.level_hv(10, d)
# the for seasons: winter, spring, summer, fall
seasons = hdc.functional.circular_hv(4, d)

# map a float between min, max to an index of size 10
# we map the 10 weight levels between 0 to 200 grams
weight_index = hdc.functional.value_to_index(149.0, 0, 200, 10)

values = torch.stack([
    fruits[0],
    weights[weight_index],
    seasons[3],
])
# creates a dictionary: 
# record = key[0] * value[0] + key[1] * value[1] + key[2] * value[2]
record = hdc.functional.struct(keys, values)

#### Similar Python code
# 
# record = dict(
#     fruit="apple", 
#     weight=149.0,
#     season="fall"
# )
# 

This example creates a hypervector that represents the record of a fruit, storing its species, weight, and growing season as one hypervector. This is achieved by combining the atomic information units into a structure (similar to a Python dictionary).

You will notice that we first declare all the symbols which are used to represent information. Note the type of hypervector used for each type of information, the fruits and keys use random hypervectors as they represent unrelated information whereas the weights and seasons use level and circular-hypervectors because they have linear and circular-correlations, respectively.

Contributing

Creating a New Release

  • A GitHub release triggers a GitHub action that builds the library and publishes it to PyPi and Conda in addition to the documentation website.
  • Before creating a new GitHub release, increment the version number in setup.py using semantic versioning.
  • When creating a new GitHub release, set the tag to be "v{version number}", e.g., v1.5.2, and provide a clear description of the changes.

License

This library is MIT licensed.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hdc-0.5.7.tar.gz (16.5 kB view details)

Uploaded Source

Built Distribution

hdc-0.5.7-py3-none-any.whl (22.3 kB view details)

Uploaded Python 3

File details

Details for the file hdc-0.5.7.tar.gz.

File metadata

  • Download URL: hdc-0.5.7.tar.gz
  • Upload date:
  • Size: 16.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for hdc-0.5.7.tar.gz
Algorithm Hash digest
SHA256 0c5a2b00dbe58197c3f94cfa8e259b4a54971ab224b3e825ed85fdf94e451f53
MD5 4320dfca8327525c5a1b1bf9b8456fc8
BLAKE2b-256 b10ecaa59f57efe00d23ac39e4983e627e758a3f21d38de5734e10ee1a530561

See more details on using hashes here.

File details

Details for the file hdc-0.5.7-py3-none-any.whl.

File metadata

  • Download URL: hdc-0.5.7-py3-none-any.whl
  • Upload date:
  • Size: 22.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for hdc-0.5.7-py3-none-any.whl
Algorithm Hash digest
SHA256 ade9af82e65b65767dfd359c6596a0dad5fbcbed1774beed9e8550cc32ac660f
MD5 61470311fa2bda0e276ec3ea96886af0
BLAKE2b-256 4b96564c49b39cc582ac367e06d30bfa1cd6cf25acd398710efd1b37723a72ac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page