Skip to main content

Map objects within a HDF file and create a dataset namespace

Project description

hdfmap

Map objects within an HDF file and create a dataset namespace.

PyPI License

Version 0.5

By Dan Porter
Diamond Light Source
2024

Docs

TL;DR - Usage

from hdfmap import create_nexus_map, load_hdf

# HdfMap from NeXus file:
m = create_nexus_map('file.nxs')
m['energy']  # >> '/entry/instrument/monochromator/energy'
m['signal']  # >> '/entry/measurement/sum'
m['axes']  # >> '/entry/measurement/theta'
m.get_image_path()  # >> '/entry/instrument/pil3_100k/data'

with load_hdf('file.nxs') as nxs:
    path = m.get_path('scan_command')
    cmd = nxs[path][()]  # returns bytes data direct from file
    cmd = m.get_data(nxs, 'scan_command')  # returns converted str output
    string = m.format_hdf(nxs, "the energy is {energy:.2f} keV")
    d = m.get_dataholder(nxs)  # classic data table, d.scannable, d.metadata

# Shortcuts - single file reloader class
from hdfmap import NexusLoader

scan = NexusLoader('file.hdf')
[data1, data2] = scan.get_data(['dataset_name_1', 'dataset_name_2'])
data = scan.eval('dataset_name_1 * 100 + 2')
string = scan.format('my data is {dataset_name_1:.2f}')

# Shortcuts - multifile load data (generate map from first file)
from hdfmap import hdf_data, hdf_eval, hdf_format, hdf_image

all_data = hdf_data([f'file{n}.nxs' for n in range(100)], 'dataset_name')
normalised_data = hdf_eval(filenames, 'total / Transmission / (rc / 300.)')
descriptions = hdf_format(filenames, 'Energy: {en:5.3f} keV')
image_stack = hdf_image(filenames, index=31)

Installation

Requires: Python >=3.10, Numpy, h5py

python -m pip install --upgrade git+https://github.com/DanPorter/hdfmap.git

Description

Another generic hdf reader but the idea here is to build up a namespace dict of {'name': 'path'} for every dataset, then group them in hopefully a useful way.

Objects within the HDF file are separated into Groups and Datasets. Each object has a defined 'path' and 'name' paramater, as well as other attributes

  • path -> '/entry/measurement/data' -> the location of an object within the file
  • name -> 'data' -> an path expressed as a simple variable name

Paths are unique locations within the file but can be used to identify similar objects in other files Names may not be unique within a file and are generated from the path.

name path
Description simple identifier of dataset hdf path built from position in file
Example 'scan_command' '/entry/scan_command'

Names of different types of datasets are stored for arrays (size > 0) and values (size 0) Names for scannables relate to all arrays of a particular size A combined list of names is provided where scannables > arrays > values

HdfMap Attributes

map.groups stores attributes of each group by path
map.classes stores list of group paths by nx_class
map.datasets stores attributes of each dataset by path
map.arrays stores array dataset paths by name
map.values stores value dataset paths by name
map.scannables stores array dataset paths with given size, by name
map.combined stores array and value paths (arrays overwrite values)
map.image_data stores dataset paths of image data

E.G.

map.groups = {'/hdf/group': ('class', 'name', {attrs}, [datasets])}
map.classes = {'class_name': ['/hdf/group1', '/hdf/group2']}
map.datasets = {'/hdf/group/dataset': ('name', size, shape, {attrs})}
map.arrays = {'name': '/hdf/group/dataset'}
map.values = {'name': '/hdf/group/dataset'}
map.scannables = {'name': '/hdf/group/dataset'}
map.image_data = {'name': '/hdf/group/dataset'}

HdfMap Methods

map.populate(h5py.File) populates the dictionaries using the given file
map.generate_scannables(array_size) populates scannables namespace with arrays of same size
map.most_common_size() returns the most common dataset size > 1
map.get_size('name_or_path') return dataset size
map.get_shape('name_or_path') return dataset size
map.get_attr('name_or_path', 'attr') return value of dataset attribute
map.get_path('name_or_group_or_class') returns path of object with name
map.get_image_path() returns default path of detector dataset (or largest dataset)
map.get_group_path('name_or_path_or_class') return path of group with class
map.get_group_datasets('name_or_path_or_class') return list of dataset paths in class

HdfMap File Methods

map.get_metadata(h5py.File) returns dict of value datasets
map.get_scannables(h5py.File) returns dict of scannable datasets
map.get_scannalbes_array(h5py.File) returns numpy array of scannable datasets
map.get_dataholder(h5py.File) returns dict like object with metadata and scannables
map.get_image(h5py.File, index) returns image data
map.get_data(h5py.File, 'name') returns data from dataset
map.eval(h5py.File, 'expression') returns output of expression using dataset names
map.format(h5py.File, 'string {name}') returns output of str expression

NeXus Files

Files using the NeXus Format can generate special NexusMap objects. These work in the same way as the general HdfMaps but contain additional special names in the namespace:

'axes' returns path of default NXaxes
'signal' returns path of default NXsignal

In addition, the map.scannables dict will be populated automatically by the names given in the "scan_fields" dataset or by datasets from the first NXdata group. The default image data will be taken from the first NXdetector dataset.

Examples

scan data & metadata

Separate datasets in a NeXus file into Diamond's classic scannables and metadata, similar to what was in the old '*.dat' files.

from hdfmap import create_nexus_map, load_hdf

# HdfMap from NeXus file:
hmap = create_nexus_map('file.nxs')
with load_hdf('file.nxs') as nxs:
    scannables = hmap.get_scannables_array(nxs)  # creates 2D numpy array
    labels = scannables.dtype.names
    metadata = hmap.get_metadata(nxs)  # {'name': value}
    d = hmap.get_dataholder(nxs)  # classic data table, d.scannable, d.metadata
d.theta == d['theta']  # scannable array 'theta'
d.metadata.scan_command == d.metadata['scan_command']  # single value 'scan_command'

# OR, use the shortcut:
from hdfmap import nexus_data_block

d = nexus_data_block('file.nxs')

# The data loader class removes the need to open the files:
from hdfmap import NexusLoader

scan = NexusLoader('file.nxs')
metadata = scan.get_metadata()
scannables = scan.get_scannables()

automatic default plot axes

If defined in the nexus file, 'axes' and 'signal' will be populated automatically

import matplotlib.pyplot as plt
from hdfmap import create_nexus_map, load_hdf

# HdfMap from NeXus file:
hmap = create_nexus_map('file.nxs')
with load_hdf('file.nxs') as nxs:
    axes = hmap.get_data(nxs, 'axes')
    signal = hmap.get_data(nxs, 'signal')
    title = hmap.format_hdf(nxs, "{entry_identifier}\n{scan_command}")
axes_label = hmap.get_path('axes')
signal_label = hmap.get_path('signal')
# plot the data (e.g. using matplotlib)
plt.figure()
plt.plot(axes, signal)
plt.xlabel(axes_label)
plt.ylabel(signal_label)
plt.title(title)

# Or, using NexusLoader:
from hdfmap import NexusLoader

scan = NexusLoader('file.nxs')
axes, signal = scan('axes, signal')
axes_label, signal_label = scan('_axes, _signal')
title = scan.format("{entry_identifier}\n{scan_command}")

Automatic image data

Get images from the first detector in a NeXus file

from hdfmap import create_nexus_map, load_hdf

# HdfMap from NeXus file:
hmap = create_nexus_map('file.nxs')
image_location = hmap.get_image_path()  # returns the hdf path chosen for the default detector
with load_hdf('file.nxs') as nxs:
    middle_image = hmap.get_image(nxs)  # returns single image from index len(dataset)//2
    first_image = hmap.get_image(nxs, 0)  # returns single image from dataset[0, :, :]
    volume = hmap.get_image(nxs, ())  # returns whole volume as array
    roi = hmap.get_image(nxs, (0, slice(5, 10, 1), slice(5, 10, 1)))  # returns part of dataset

# Or, using NexusLoader:
from hdfmap import NexusLoader

scan = NexusLoader('file.nxs')
image = scan.get_image(index=0)  # using index as defined above

Multi-scan metadata string

Generate a metadata string from every file in a directory very quickly. The HdfMap is only created for the first file, the remaining files are treated as having identical structure.

from hdfmap import list_files, hdf_format

format_string = "#{entry_identifier}: {start_time} : E={incident_energy:.3f} keV : {scan_command}"
files = list_files('/directoy/path', extension='.nxs')
strings_list = hdf_format(files, format_string)
print('\n'.join(strings_list))

# other multi-file readers:
from hdfmap import hdf_data, hdf_image, hdf_eval

data_list = hdf_data(files, 'incident_energy')
image_list = hdf_image(files, index=0)
data_list = hdf_eval(files, 'signal / Transmission')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hdfmap-0.5.1.tar.gz (38.6 kB view details)

Uploaded Source

Built Distribution

hdfmap-0.5.1-py3-none-any.whl (33.8 kB view details)

Uploaded Python 3

File details

Details for the file hdfmap-0.5.1.tar.gz.

File metadata

  • Download URL: hdfmap-0.5.1.tar.gz
  • Upload date:
  • Size: 38.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for hdfmap-0.5.1.tar.gz
Algorithm Hash digest
SHA256 6aa724cdf370711265a461d075d744d028f101d80e4703194c880e2a62bda618
MD5 62d9477246e3161bc735ca90cfb0390b
BLAKE2b-256 4396e8a3cd0cc64c324f16a2669e665ea6dea65a0f5bad2539a4d4b690841089

See more details on using hashes here.

File details

Details for the file hdfmap-0.5.1-py3-none-any.whl.

File metadata

  • Download URL: hdfmap-0.5.1-py3-none-any.whl
  • Upload date:
  • Size: 33.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for hdfmap-0.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 a435ff1c7b83b3b24166b6bdc73483c8ab87f7d3b50649bec0f2f780ada84ea9
MD5 5f8c2f605f703ee8e5ef65b3939a9f3f
BLAKE2b-256 75f13e06eafe367cfdeb85883c2d59cab99c3cc57a1d2f899c007d92ee408ef7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page