Skip to main content

A hierarchical data modeling framework for modern science data standards

Project description

The Hierarchical Data Modeling Framework, or HDMF, is a Python package for working with hierarchical data. It provides APIs for specifying data models, reading and writing data to different storage backends, and representing data with Python objects.

Documentation of HDMF can be found at https://hdmf.readthedocs.io.

Latest Release

https://badge.fury.io/py/hdmf.svg https://anaconda.org/conda-forge/hdmf/badges/version.svg https://zenodo.org/badge/167271700.svg

Overall Health

https://github.com/hdmf-dev/hdmf/actions/workflows/run_coverage.yml/badge.svg https://github.com/hdmf-dev/hdmf/actions/workflows/run_tests.yml/badge.svg https://github.com/hdmf-dev/hdmf/actions/workflows/codespell.yml/badge.svg https://github.com/hdmf-dev/hdmf/actions/workflows/ruff.yml/badge.svg https://github.com/hdmf-dev/hdmf/actions/workflows/check_sphinx_links.yml/badge.svg https://github.com/hdmf-dev/hdmf/actions/workflows/run_pynwb_tests.yml/badge.svg https://github.com/hdmf-dev/hdmf/actions/workflows/run_hdmf_zarr_tests.yml/badge.svg https://github.com/hdmf-dev/hdmf/actions/workflows/run_nwb_extension_tests.yml/badge.svg https://github.com/hdmf-dev/hdmf/actions/workflows/run_all_tests.yml/badge.svg https://github.com/hdmf-dev/hdmf/actions/workflows/deploy_release.yml/badge.svg https://codecov.io/gh/hdmf-dev/hdmf/branch/dev/graph/badge.svg Documentation Status

Installation

See the HDMF documentation.

Code of Conduct

This project and everyone participating in it is governed by our code of conduct guidelines. By participating, you are expected to uphold this code.

Contributing

For details on how to contribute to HDMF see our contribution guidelines.

Citing HDMF

  • Manuscript:

@INPROCEEDINGS{9005648,
  author={A. J. {Tritt} and O. {Rübel} and B. {Dichter} and R. {Ly} and D. {Kang} and E. F. {Chang} and L. M. {Frank} and K. {Bouchard}},
  booktitle={2019 IEEE International Conference on Big Data (Big Data)},
  title={HDMF: Hierarchical Data Modeling Framework for Modern Science Data Standards},
  year={2019},
  volume={},
  number={},
  pages={165-179},
  doi={10.1109/BigData47090.2019.9005648},
  note={}}
  • RRID: (Hierarchical Data Modeling Framework, RRID:SCR_021303)

LICENSE

“hdmf” Copyright (c) 2017-2026, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from the U.S. Dept. of Energy). All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

  1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

  2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

  3. Neither the name of the University of California, Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to the features, functionality or performance of the source code (“Enhancements”) to anyone; however, if you choose to make your Enhancements available either publicly, or directly to Lawrence Berkeley National Laboratory, without imposing a separate written license agreement for such Enhancements, then you hereby grant the following license: a non-exclusive, royalty-free perpetual license to install, use, modify, prepare derivative works, incorporate into other computer software, distribute, and sublicense such enhancements or derivative works thereof, in binary and source code form.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hdmf-4.3.1.tar.gz (16.6 MB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

hdmf-4.3.1-py3-none-any.whl (341.9 kB view details)

Uploaded Python 3

File details

Details for the file hdmf-4.3.1.tar.gz.

File metadata

  • Download URL: hdmf-4.3.1.tar.gz
  • Upload date:
  • Size: 16.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.2

File hashes

Hashes for hdmf-4.3.1.tar.gz
Algorithm Hash digest
SHA256 dd16335c1a2fd38c3b9f01ed2b9be8a80536cc42d7b72f49a16bad9999668b99
MD5 11a525fa3add4a8d5df83473b26bd592
BLAKE2b-256 b8e98ccaa1c8b3c9aca25c0216ec09a0051f247283dad9be928424686f5cbaaa

See more details on using hashes here.

File details

Details for the file hdmf-4.3.1-py3-none-any.whl.

File metadata

  • Download URL: hdmf-4.3.1-py3-none-any.whl
  • Upload date:
  • Size: 341.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.2

File hashes

Hashes for hdmf-4.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 030e52c38adacaca62bcf39bf6bc7c7d23fe481a9ae94d2ad480f7e0e49296bd
MD5 6a2eb86203462085b3e3633308d767f1
BLAKE2b-256 2edd5f86c7ac3f31cd9d959be6dec9e54d2ede02aa932fc599a7ff0e03c67758

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page