Skip to main content

HDX Python Utilities

Project description

Travis-CI Build Status Coveralls Build Status

The HDX Python Utilities Library provides a range of helpful utilities:

  1. Easy downloading of files with support for authentication, streaming and hashing

  2. Loading and saving JSON and YAML (inc. with OrderedDict)

  3. Database utilities (inc. connecting through SSH and SQLAlchemy helpers)

  4. Dictionary and list utilities

  5. HTML utilities (inc. BeautifulSoup helper)

  6. Compare files (eg. for testing)

  7. Simple emailing

  8. Easy logging setup

  9. Path utilities

  10. Text processing

This library is part of the Humanitarian Data Exchange (HDX) project. If you have humanitarian related data, please upload your datasets to HDX.

Usage

The library has detailed API documentation which can be found here: http://ocha-dap.github.io/hdx-python-utilities/. The code for the library is here: https://github.com/ocha-dap/hdx-python-utilities.

Downloading files

Various utilities to help with downloading files. Includes retrying by default.

For example, given YAML file extraparams.yml:

mykey:
    basic_auth: "XXXXXXXX"
    locale: "en"

We can create a downloader as shown below that will use the authentication defined in basic_auth and add the parameter locale=en to each request (eg. for get request http://myurl/lala?param1=p1&locale=en):

with Download(extra_params_yaml='extraparams.yml', extra_params_lookup='mykey') as downloader:
    response = downloader.download(url)  # get requests library response
    json = response.json()

    # Download file to folder/filename
    f = downloader.download_file('http://myurl', post=False,
                                 parameters=OrderedDict([('b', '4'), ('d', '3')]),
                                 folder=tmpdir, filename=filename)
    filepath = abspath(f)

    # Read row by row from tabular file
    for row in downloader.get_tabular_rows('http://myurl/my.csv', dict_rows=True, headers=1)
        a = row['col']

Other useful functions:

# Build get url from url and dictionary of parameters
Download.get_url_for_get('http://www.lala.com/hdfa?a=3&b=4',
                         OrderedDict([('c', 'e'), ('d', 'f')]))
    # == 'http://www.lala.com/hdfa?a=3&b=4&c=e&d=f'

# Extract url and dictionary of parameters from get url
Download.get_url_params_for_post('http://www.lala.com/hdfa?a=3&b=4',
                                 OrderedDict([('c', 'e'), ('d', 'f')]))
    # == ('http://www.lala.com/hdfa',
          OrderedDict([('a', '3'), ('b', '4'), ('c', 'e'), ('d', 'f')]))

Loading and Saving JSON and YAML

Examples:

# Load YAML
mydict = load_yaml('my_yaml.yml')

# Load 2 YAMLs and merge into dictionary
mydict = load_and_merge_yaml('my_yaml1.yml', 'my_yaml2.yml')

# Load YAML into existing dictionary
mydict = load_yaml_into_existing_dict(existing_dict, 'my_yaml.yml')

# Load JSON
mydict = load_json('my_json.yml')

# Load 2 JSONs and merge into dictionary
mydict = load_and_merge_json('my_json1.json', 'my_json2.json')

# Load JSON into existing dictionary
mydict = load_json_into_existing_dict(existing_dict, 'my_json.json')

# Save dictionary to YAML file in pretty format
# preserving order if it is an OrderedDict
save_yaml(mydict, 'mypath.yml', pretty=True, sortkeys=False)

# Save dictionary to JSON file in compact form
# sorting the keys
save_json(mydict, 'mypath.json', pretty=False, sortkeys=False)

Database utilities

These are built on top of SQLAlchemy and simplify its setup.

Your SQLAlchemy database tables must inherit from Base in hdx.utilities.database eg.

from hdx.utilities.database import Base
class MyTable(Base):
    my_col = Column(Integer, ForeignKey(MyTable2.col2), primary_key=True)

Examples:

# Get SQLAlchemy session object given database parameters and
# if needed SSH parameters. If database is PostgreSQL, will poll
# till it is up.
with Database(database='db', host='1.2.3.4', username='user', password='pass',
              driver='driver', ssh_host='5.6.7.8', ssh_port=2222,
              ssh_username='sshuser', ssh_private_key='path_to_key') as session:
    session.query(...)

# Extract dictionary of parameters from SQLAlchemy url
result = Database.get_params_from_sqlalchemy_url(TestDatabase.sqlalchemy_url)

# Build SQLAlchemy url from dictionary of parameters
result = Database.get_sqlalchemy_url(**TestDatabase.params)

# Wait util PostgreSQL is up
Database.wait_for_postgres('mydatabase', 'myserver', 5432, 'myuser', 'mypass')

Dictionary and list utilities

Examples:

# Merge dictionaries
d1 = {1: 1, 2: 2, 3: 3, 4: ['a', 'b', 'c']}
d2 = {2: 6, 5: 8, 6: 9, 4: ['d', 'e']}
result = merge_dictionaries([d1, d2])
assert result == {1: 1, 2: 6, 3: 3, 4: ['d', 'e'], 5: 8, 6: 9}

# Diff dictionaries
d1 = {1: 1, 2: 2, 3: 3, 4: {'a': 1, 'b': 'c'}}
d2 = {4: {'a': 1, 'b': 'c'}, 2: 2, 3: 3, 1: 1}
diff = dict_diff(d1, d2)
assert diff == {}
d2[3] = 4
diff = dict_diff(d1, d2)
assert diff == {3: (3, 4)}

# Add element to list in dict
d = dict()
dict_of_lists_add(d, 'a', 1)
assert d == {'a': [1]}
dict_of_lists_add(d, 2, 'b')
assert d == {'a': [1], 2: ['b']}
dict_of_lists_add(d, 'a', 2)
assert d == {'a': [1, 2], 2: ['b']}

# Spread items in list so similar items are further apart
input_list = [3, 1, 1, 1, 2, 2]
result = list_distribute_contents(input_list)
assert result == [1, 2, 1, 2, 1, 3]

# Get values for the same key in all dicts in list
input_list = [{'key': 'd', 1: 5}, {'key': 'd', 1: 1}, {'key': 'g', 1: 2},
              {'key': 'a', 1: 2}, {'key': 'a', 1: 3}, {'key': 'b', 1: 5}]
result = extract_list_from_list_of_dict(input_list, 'key')
assert result == ['d', 'd', 'g', 'a', 'a', 'b']

# Cast either keys or values or both in dictionary to type
d1 = {1: 2, 2: 2.0, 3: 5, 'la': 4}
assert key_value_convert(d1, keyfn=int) == {1: 2, 2: 2.0, 3: 5, 'la': 4}
assert key_value_convert(d1, keyfn=int, dropfailedkeys=True) == {1: 2, 2: 2.0, 3: 5}
d1 = {1: 2, 2: 2.0, 3: 5, 4: 'la'}
assert key_value_convert(d1, valuefn=int) == {1: 2, 2: 2.0, 3: 5, 4: 'la'}
assert key_value_convert(d1, valuefn=int, dropfailedvalues=True) == {1: 2, 2: 2.0, 3: 5}

# Cast keys in dictionary to integer
d1 = {1: 1, 2: 1.5, 3.5: 3, '4': 4}
assert integer_key_convert(d1) == {1: 1, 2: 1.5, 3: 3, 4: 4}

# Cast values in dictionary to integer
d1 = {1: 1, 2: 1.5, 3: '3', 4: 4}
assert integer_value_convert(d1) == {1: 1, 2: 1, 3: 3, 4: 4}

# Cast values in dictionary to float
d1 = {1: 1, 2: 1.5, 3: '3', 4: 4}
assert float_value_convert(d1) == {1: 1.0, 2: 1.5, 3: 3.0, 4: 4.0}

# Average values by key in two dictionaries
d1 = {1: 1, 2: 1.0, 3: 3, 4: 4}
d2 = {1: 2, 2: 2.0, 3: 5, 4: 4, 7: 3}
assert avg_dicts(d1, d2) == {1: 1.5, 2: 1.5, 3: 4, 4: 4}

# Read and write lists to csv
l = [[1, 2, 3, 'a'],
     [4, 5, 6, 'b'],
     [7, 8, 9, 'c']]
write_list_to_csv(l, filepath, headers=['h1', 'h2', 'h3', 'h4'])
newll = read_list_from_csv(filepath)
newld = read_list_from_csv(filepath, dict_form=True, headers=1)
assert newll == [['h1', 'h2', 'h3', 'h4'], ['1', '2', '3', 'a'], ['4', '5', '6', 'b'], ['7', '8', '9', 'c']]
assert newld == [{'h1': '1', 'h2': '2', 'h4': 'a', 'h3': '3'},
                {'h1': '4', 'h2': '5', 'h4': 'b', 'h3': '6'},
                {'h1': '7', 'h2': '8', 'h4': 'c', 'h3': '9'}]

# Convert command line arguments to dictionary
args = 'a=1,big=hello,1=3'
assert args_to_dict(args) == {'a': '1', 'big': 'hello', '1': '3'}

HTML utilities

These are built on top of BeautifulSoup and simplify its setup.

Examples:

# Get soup for url with optional kwarg downloader=Download() object
soup = get_soup('http://myurl')
tag = soup.find(id='mytag')

# Get text of tag stripped of leading and trailing whitespace
# and newlines and with &nbsp replaced with space
result = get_text('mytag')

# Extract HTML table as list of dictionaries
result = extract_table(tabletag)

Compare files

Compare two files:

result = compare_files(testfile1, testfile2)
# Result is of form eg.:
# ["- coal   ,3      ,7.4    ,'needed'\n", '?         ^\n',
#  "+ coal   ,1      ,7.4    ,'notneeded'\n", '?         ^                +++\n']

Emailing

Example of setup and sending email:

smtp_initargs = {
    'host': 'localhost',
    'port': 123,
    'local_hostname': 'mycomputer.fqdn.com',
    'timeout': 3,
    'source_address': ('machine', 456),
}
username = 'user@user.com'
password = 'pass'
email_config_dict = {
    'connection_type': 'ssl',
    'username': username,
    'password': password
}
email_config_dict.update(smtp_initargs)

recipients = ['larry@gmail.com', 'moe@gmail.com', 'curly@gmail.com']
subject = 'hello'
text_body = 'hello there'
html_body = """\
<html>
  <head></head>
  <body>
    <p>Hi!<br>
       How are you?<br>
       Here is the <a href="https://www.python.org">link</a> you wanted.
    </p>
  </body>
</html>
"""
sender = 'me@gmail.com'

with Email(email_config_dict=email_config_dict) as email:
    email.send(recipients, subject, text_body, sender=sender)

Configuring Logging

The library provides coloured logs with a simple default setup which should be adequate for most cases. If you wish to change the logging configuration from the defaults, you will need to call setup_logging with arguments.

from hdx.utilities.easy_logging import setup_logging
...
logger = logging.getLogger(__name__)
setup_logging(KEYWORD ARGUMENTS)

KEYWORD ARGUMENTS can be:

Choose

Argument

Type

Value

Default

One of:

logging_config_dict

dict

Logging configuration dictionary

or

logging_config_json

str

Path to JSON Logging configuration

or

logging_config_yaml

str

Path to YAML Logging configuration

Library’s internal logging_configuration.yml

One of:

smtp_config_dict

dict

Email Logging configuration dictionary

or

smtp_config_json

str

Path to JSON Email Logging configuration

or

smtp_config_yaml

str

Path to YAML Email Logging configuration

Do not supply smtp_config_dict, smtp_config_json or smtp_config_yaml unless you are using the default logging configuration!

If you are using the default logging configuration, you have the option to have a default SMTP handler that sends an email in the event of a CRITICAL error by supplying either smtp_config_dict, smtp_config_json or smtp_config_yaml. Here is a template of a YAML file that can be passed as the smtp_config_yaml parameter:

handlers:
    error_mail_handler:
        toaddrs: EMAIL_ADDRESSES
        subject: "RUN FAILED: MY_PROJECT_NAME"

Unless you override it, the mail server mailhost for the default SMTP handler is localhost and the from address fromaddr is noreply@localhost.

To use logging in your files, simply add the line below to the top of each Python file:

logger = logging.getLogger(__name__)

Then use the logger like this:

logger.debug('DEBUG message')
logger.info('INFORMATION message')
logger.warning('WARNING message')
logger.error('ERROR message')
logger.critical('CRITICAL error message')

Path utilities

Examples:

# Get current directory of script
dir = script_dir(ANY_PYTHON_OBJECT_IN_SCRIPT)

# Get current directory of script with filename appended
path = script_dir_plus_file('myfile.txt', ANY_PYTHON_OBJECT_IN_SCRIPT)

# Gets temporary directory from environment variable
# TEMP_DIR and falls back to os function
temp_folder = temp_dir()

Text processing

Examples:

# Extract words from a string sentence into a list
result = get_words_in_sentence("Korea (Democratic People's Republic of)")
assert result == ['Korea', 'Democratic', "People's", 'Republic', 'of']

# Find matching text in strings
a = 'The quick brown fox jumped over the lazy dog. It was so fast!'
b = 'The quicker brown fox leapt over the slower fox. It was so fast!'
c = 'The quick brown fox climbed over the lazy dog. It was so fast!'
result = get_matching_text([a, b, c], match_min_size=10)
assert result == ' brown fox  over the  It was so fast!'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hdx-python-utilities-1.6.0.tar.gz (47.2 kB view details)

Uploaded Source

Built Distribution

hdx_python_utilities-1.6.0-py2.py3-none-any.whl (27.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file hdx-python-utilities-1.6.0.tar.gz.

File metadata

  • Download URL: hdx-python-utilities-1.6.0.tar.gz
  • Upload date:
  • Size: 47.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.6.5

File hashes

Hashes for hdx-python-utilities-1.6.0.tar.gz
Algorithm Hash digest
SHA256 f2f5c496e334be66f96d16972f9a362cd2d74edaf7a2f014bf9070a30447a36b
MD5 c7600021ad8488d02dc9074cddec5658
BLAKE2b-256 b82715761618b95b3fcb3293071058ce0852ee8004d38f5e220e72be03f21c24

See more details on using hashes here.

File details

Details for the file hdx_python_utilities-1.6.0-py2.py3-none-any.whl.

File metadata

  • Download URL: hdx_python_utilities-1.6.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 27.9 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.6.5

File hashes

Hashes for hdx_python_utilities-1.6.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 ae08560e710ae6081dec95b0deb430d62fcc0b19b37a56214566d9cb3a7491ba
MD5 abfa5edca504658018ff2e016dda498e
BLAKE2b-256 2b9dfee15cb9da6e9c077f3c76d91e3c5c0f0ee2058143ec95c3fdf6eb6720b1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page