Skip to main content

Fast and simple probabilistic data matching package

Project description

healmatcher

  • healmatcher is a simple but fast probabilistic data matching package developed by NYULH HEAL Lab.
  • The package is best optimized for matching healthcare database (e.g. EHR) as it has designed to link Medicaid and Client Database System data.
  • Splink package is extensively being used to run core linkage processes.
  • Currently, the model supports 4 variables (sex, date of birth, last 4 digits of ssn, and first 2 letters of last name) to run the linkage process.

How to install

pip install healmatcher

How to use (example)

# Install package
!pip install healmatcher

# Load package
from healmatcher import hm

# create example dataset
testa = pd.DataFrame({
    'sex':[1,2,1,2,1,2,1,2,1,2],
    'dob':['2012-1-1','2011-12-1','1999-1-1','1998-11-1','2012-11-1','1984-1-1','1982-1-1','1975-1-1','1967-1-1','1954-1-1'],
    'ssn':[1111,2222,3333,4444,5555,6666,7777,8888,9999,1010],
    'ln':["as",'ss','zz','rr','ww','wa','tr','tt','hh','gq'],
    'PROVIDER_NUMBER':[2,1,1,1,1,1,1,1,2,1]
})
testb = pd.DataFrame({
    'sex':[2,2,1,1,1,2,1,2,1,1],
    'dob':['2012-1-1','2001-12-1','1999-1-1','1998-11-1','2012-11-1','1984-1-1','1982-1-1','1975-1-1','1967-1-1','1954-1-1'],
    'ssn':[1111,2222,3333,4444,5555,6666,7777,8888,9999,1010],
    'ln':["as",'ls','zz','rr','wb','wa','tr','tt','ha','gq'],
    'PROVIDER_NUMBER':[2,1,1,1,1,1,1,1,2,1]

# Run matching
hm(
    df_a = testa,
    df_b = testb,
    col_a=['sex','dob','ssn','ln'],
    col_b=['sex','dob','ssn','ln'],
    match_prob_threshold = 0.001,
    iteration = 20,
    model2 = True,
    blocking_rule_for_training_input = 'PROVIDER_NUMBER',
    onetoone = True,
    match_summary = True
)

Updates

  • use_save_model=True : Load pre-trained model to run matching
  • save_model_path = PATH : add path to load a model (json format)
  • export_model=True : argument to save current model
  • export_model_path=PATH : add path to save current model

Follow up

  • Please visit our repo if you have any questions.

Webpage

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

healmatcher-0.0.33.tar.gz (5.7 kB view details)

Uploaded Source

Built Distribution

healmatcher-0.0.33-py3-none-any.whl (5.9 kB view details)

Uploaded Python 3

File details

Details for the file healmatcher-0.0.33.tar.gz.

File metadata

  • Download URL: healmatcher-0.0.33.tar.gz
  • Upload date:
  • Size: 5.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.0

File hashes

Hashes for healmatcher-0.0.33.tar.gz
Algorithm Hash digest
SHA256 6f895eed53f44b4eda20aebef346b3033bbadd292c752a140f3e87f5bf729834
MD5 eab23d8dc87932ace72f7ea48adac1e9
BLAKE2b-256 e8d43dfa1624723797dd605d7c87c1dd511beeafe5a5616702ccb6f39f53bd59

See more details on using hashes here.

File details

Details for the file healmatcher-0.0.33-py3-none-any.whl.

File metadata

File hashes

Hashes for healmatcher-0.0.33-py3-none-any.whl
Algorithm Hash digest
SHA256 5446cf8885574b19caf1e3f933eae3e8519a956e0e63e1cfe05174d604f5c5da
MD5 c11d2c6fdcd16c86a0da463f7b793a49
BLAKE2b-256 3ff5224661c768b7ec91ee6d0c28146e1136fba80edae1bcba0179355ba4e3ef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page