Skip to main content

Fast and simple probabilistic data matching package

Project description

healmatcher

  • healmatcher is a simple but fast probabilistic data matching package developed by NYULH HEAL Lab.
  • The package is best optimized for matching healthcare database (e.g. EHR) as it has designed to link Medicaid and Client Database System data.
  • Splink package is extensively being used to run core linkage processes.
  • Currently, the model supports 4 variables (sex, date of birth, last 4 digits of ssn, and first 2 letters of last name) to run the linkage process.

How to install

pip install healmatcher

How to use (example)

# Install package
!pip install healmatcher

# Load package
from healmatcher import hm

# create example dataset
testa = pd.DataFrame({
    'sex':[1,2,1,2,1,2,1,2,1,2],
    'dob':['2012-1-1','2011-12-1','1999-1-1','1998-11-1','2012-11-1','1984-1-1','1982-1-1','1975-1-1','1967-1-1','1954-1-1'],
    'ssn':[1111,2222,3333,4444,5555,6666,7777,8888,9999,1010],
    'ln':["as",'ss','zz','rr','ww','wa','tr','tt','hh','gq'],
    'PROVIDER_NUMBER':[2,1,1,1,1,1,1,1,2,1]
})
testb = pd.DataFrame({
    'sex':[2,2,1,1,1,2,1,2,1,1],
    'dob':['2012-1-1','2001-12-1','1999-1-1','1998-11-1','2012-11-1','1984-1-1','1982-1-1','1975-1-1','1967-1-1','1954-1-1'],
    'ssn':[1111,2222,3333,4444,5555,6666,7777,8888,9999,1010],
    'ln':["as",'ls','zz','rr','wb','wa','tr','tt','ha','gq'],
    'PROVIDER_NUMBER':[2,1,1,1,1,1,1,1,2,1]

# Run matching
hm(
    df_a = testa,
    df_b = testb,
    col_a=['sex','dob','ssn','ln'],
    col_b=['sex','dob','ssn','ln'],
    match_prob_threshold = 0.001,
    iteration = 20,
    model2 = True,
    blocking_rule_for_training_input = 'PROVIDER_NUMBER',
    onetoone = True,
    match_summary = True
)

Updates

  • use_save_model=True : Load pre-trained model to run matching
  • save_model_path = PATH : add path to load a model (json format)
  • export_model=True : argument to save current model
  • export_model_path=PATH : add path to save current model

Follow up

  • Please visit our repo if you have any questions.

Webpage

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

healmatcher-0.0.37.tar.gz (5.8 kB view details)

Uploaded Source

Built Distribution

healmatcher-0.0.37-py3-none-any.whl (6.0 kB view details)

Uploaded Python 3

File details

Details for the file healmatcher-0.0.37.tar.gz.

File metadata

  • Download URL: healmatcher-0.0.37.tar.gz
  • Upload date:
  • Size: 5.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.0

File hashes

Hashes for healmatcher-0.0.37.tar.gz
Algorithm Hash digest
SHA256 ed5bff35d3b7209277fea2837fdde63f3d1d6530fcc888adb0f0fe958df6209c
MD5 5e95ed186c78c4195229496ac994b3aa
BLAKE2b-256 a1cf62856ec2d53ec449374417abb81a1b66ba6da0c57e15001aabc3d3c270d5

See more details on using hashes here.

File details

Details for the file healmatcher-0.0.37-py3-none-any.whl.

File metadata

File hashes

Hashes for healmatcher-0.0.37-py3-none-any.whl
Algorithm Hash digest
SHA256 1abd7ba1ae450d2f8bd6e487bc7dafda329f4f3835106a53639c2f78a3ce83fa
MD5 944ad3edaa498c0e03645a5dd5c48a4d
BLAKE2b-256 7e20e484e9b2665596cc161e161940ad641fca1374ee400451550ef7f4e370f1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page