Skip to main content

Efficient optimizers

Project description

HeavyBall

A simple package of efficient optimizers

The goal is not to thrive for completeness, full maintenance or abstraction, but instead to provide a simple largely static alternative to torch.optim with more and better optimizers.

Currently (2024-11-08, 0.7.2), the recommended optimizer is PrecondSchedulePaLMForeachSOAP.

Features

  • Stochastic Rounding: FP32 convergence with BF16 parameters
  • Inplace EMA: Same math, but less memory, less compute and higher stability
  • Foreach: Fast multi-tensor application
  • PaLM Beta2: Fast initial convergence, stable late convergence
  • ScheduleFree: No learning rate schedule, but better convergence

Getting started

pip install heavyball
import torch
import heavyball

# Create a model
model = torch.nn.Linear(16, 1)

# Create an optimizer
optimizer = heavyball.PrecondSchedulePaLMForeachSOAP(model.parameters(), lr=1e-3)

x = torch.randn(128, 16)
y = torch.randn(128, 1)

for _ in range(1000):
    optimizer.zero_grad()
    loss = torch.nn.functional.mse_loss(model(x), y)
    loss.backward()
    optimizer.step()

Optimizers

Name Description Advantages / Disadvantages
ForeachAdamW More efficient (speed, memory) AdamW + Faster than AdamW
+ Possibly more (numerically) stable
ForeachLaProp More efficient (speed, memory) LaProp + Same cost as AdamW
+ Marginally better converence (better proofs)
+ Higher hyperparameter stability
- Not a guaranteed win (can be neutral)
- No "Slingshot"
ForeachADOPT More efficient (speed, memory) ADOPT + Same cost as AdamW
+ Rigorous mathematical convergence proofs, even for challenging models (GANs)
- Empirically underperforms LaProp
- no bf16
ForeachSFAdamW More efficient (speed, memory) ScheduleFree AdamW + Same cost as AdamW, but better eval perf
+ Full control over hyperparameters
PaLMForeachSFAdamW ForeachSFAdamW with PaLM's beta2 schedule + Same cost as AdamW, but better eval perf
+ Less control, but faster early and more stable late convergence
+ ScheduleFree
- slow early convergence
ForeachSOAP More efficient (speed, memory) SOAP + Faster convergence (loss-at-step)
+ Full control over hyperparameters
- more memory usage
- more hyperparameters
- higher overhead than AdamW (can be ammortized; better loss-at-second)
PaLMForeachSOAP ForeachSOAP with PaLM's beta2 schedule + Faster convergence (loss-at-step)
+ Less control, but faster early and more stable late convergence
- more memory usage
- more hyperparameters
- higher overhead than AdamW (can be ammortized; better loss-at-second)
SFPaLMForeachSOAP ScheduleFree PaLMForeachSOAP + Fast convergence (loss-at-step)
+ less memory usage than PaLMForeachSOAP (more tham AdamW)
- slower initial convergence than PaLMForeachSOAP (but allows higher LRs)
- higher overhead than AdamW (can be ammortized)
PrecondScheduleSFPaLMForeachSOAP SFPaLMForeachSOAP with preconditioner schedule, matching the error of PrecondEvery=2 with the cost of PrecondEvery=512 + Better initial convergence than SFPaLMForeachSOAP
+ Significantly faster (sec/it) later
+ less memory usage than PaLMForeachSOAP (more tham AdamW)
- slower initial convergence than PaLMForeachSOAP (but allows higher LRs)
- higher overhead than AdamW (can be ammortized), goes to 0 with increasing number of step
PrecondSchedulePaLMForeachSOAP PrecondScheduleSFPaLMForeachSOAP without schedule-free + Best initial convergence
+ Significantly faster (sec/it) later
+ high stability
- more memory usage than PrecondScheduleSFPaLMForeachSOAP
- higher overhead than AdamW (can be ammortized), goes to 0 with increasing number of steps
PrecondScheduleForeachSOAP PrecondScheduleSFPaLMForeachSOAP without PaLM's beta2 schedule + Better initial convergence
+ Significantly faster (sec/it) later
- more memory usage than PrecondScheduleSFPaLMForeachSOAP
- higher overhead than AdamW (can be ammortized), goes to 0 with increasing number of steps

Precond Schedule

The default preconditioner schedule (f) would yield the following update intervals:

Steps Interval, f Total (schedule) Total (constant, every 2) Total (constant, every 16)
10 1.00005 10 5 (0.5x) 0 (0.0x)
100 1.026 99 50 (0.5x) 6 (0.1x)
1,000 2.0 738 500 (0.7x) 62 (0.1x)
10,000 14.3 2,168 5,000 (2.3x) 625 (0.3x)
100,000 100.2 4,049 50,000 (12.3x) 6,250 (1.5x)
1,000,000 513 7,245 500,000 (69.0x) 62,500 (8.6x)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

heavyball-0.7.4.tar.gz (14.7 kB view details)

Uploaded Source

Built Distribution

heavyball-0.7.4-py3-none-any.whl (28.9 kB view details)

Uploaded Python 3

File details

Details for the file heavyball-0.7.4.tar.gz.

File metadata

  • Download URL: heavyball-0.7.4.tar.gz
  • Upload date:
  • Size: 14.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for heavyball-0.7.4.tar.gz
Algorithm Hash digest
SHA256 5b0f10673772bd214efeabcfe697168a75bb9321e5abea6e7cfda479ffafb51e
MD5 ab95c28654c4da416431da09c2e3ce1b
BLAKE2b-256 581f80ee8b10a0e68d6a9da8fda6fe5511882955b15b86ecc79ea3132aafe46f

See more details on using hashes here.

File details

Details for the file heavyball-0.7.4-py3-none-any.whl.

File metadata

  • Download URL: heavyball-0.7.4-py3-none-any.whl
  • Upload date:
  • Size: 28.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for heavyball-0.7.4-py3-none-any.whl
Algorithm Hash digest
SHA256 f1a4c6692c8dabc4b648fdd9fa9bf153e5d5a3401a8e5295d0ba786486a70771
MD5 167cd9c7259d3418ceb11d089aabe890
BLAKE2b-256 e0ef4f99a6b8f6a76578be83adc8382f3020e2fa2fa66bbf10a9d6354b64e17d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page