Skip to main content

RNN based assembly HELEN. It works paired with MarginPolish.

Project description

H.E.L.E.N.

H.E.L.E.N. (Homopolymer Encoded Long-read Error-corrector for Nanopore)

Build Status


Pre-print of a paper describing the methods and overview of a suggested de novo assembly pipeline is now available:

Efficient de novo assembly of eleven human genomes using PromethION sequencing and a novel nanopore toolkit


Overview

HELEN uses a Recurrent-Neural-Network (RNN) based Multi-Task Learning (MTL) model that can predict a base and a run-length for each genomic position using the weights generated by MarginPolish.

© 2020 Kishwar Shafin, Trevor Pesout, Benedict Paten.
Computational Genomics Lab (CGL), University of California, Santa Cruz.

Why MarginPolish-HELEN ?

  • MarginPolish-HELEN outperforms other graph-based and Neural-Network based polishing pipelines.
  • Simple installation steps.
  • HELEN can use multiple GPUs at the same time.
  • Highly optimized pipeline that is faster than any other available polishing tool.
  • We have sequenced-assembled-polished 11 samples to ensure robustness, runtime-consistency and cost-efficiency.
  • We tested GPU usage on Amazon Web Services (AWS) and Google Cloud Platform (GCP) to ensure scalability.
  • Open source (MIT License).

Walkthrough

Installation

MarginPolish-HELEN is supported on Ubuntu 16.10/18.04 or any other Linux-based system. Â

Install prerequisites

Before you follow any of the methods, make sure you install all the dependencies:

sudo apt-get -y install git cmake make gcc g++ autoconf bzip2 lzma-dev zlib1g-dev \
libcurl4-openssl-dev libpthread-stubs0-dev libbz2-dev liblzma-dev libhdf5-dev \
python3-pip python3-virtualenv virtualenv

Method 1: Install MarginPolish-HELEN from GitHub

You can install from the GitHub repository:

git clone https://github.com/kishwarshafin/helen.git
cd helen
make install
. ./venv/bin/activate

helen --help
marginpolish --help

Each time you want to use it, activate the virtualenv:

. <path/to/helen/venv/bin/activate>

Method 2: Install using PyPi

Install prerequisites and the install MarginPolish-HELEN using pip:

python3 -m pip install helen --user

python3 -m helen.helen --help
python3 -m helen.marginpolish --help

Update the installed version:

python3 -m pip install update pip
python3 -m pip install helen --upgrade

You can also add module locations to path:

echo 'export PATH="$(python3 -m site --user-base)/bin":$PATH' >> ~/.bashrc
source ~/.bashrc

marginpolish --help
helen --help

Method 3: Use docker image

CPU based docker:
# SEE CONFIGURATION
docker run --rm -it --ipc=host kishwars/helen:latest helen --help
docker run --rm -it --ipc=host kishwars/helen:latest marginpolish --help

docker run -it --ipc=host --user=`id -u`:`id -g` --cpus="16" \
-v </directory/with/inputs_outputs>:/data kishwars/helen:latest \
helen --help
GPU based docker:
sudo apt-get install -y nvidia-docker2
# SEE CONFIGURATION
nvidia-docker run -it --ipc=host kishwars/helen:latest helen torch_stat
nvidia-docker run -it --ipc=host kishwars/helen:latest helen --help
nvidia-docker run -it --ipc=host kishwars/helen:latest marginpolish --help

# RUN HELEN
nvidia-docker run -it --ipc=host --user=`id -u`:`id -g` --cpus="16" \
-v </directory/with/inputs_outputs>:/data kishwars/helen:latest \
helen --help

Usage

MarginPolish requires a draft assembly and a mapping of reads to the draft assembly. We commend using Shasta as the initial assembler and MiniMap2 for the mapping.

Step 1: Generate an initial assembly

Generate an assembly using one of the ONT assemblers:

Step 2: Create an alignment between reads and shasta assembly

We recommend using MiniMap2 to generate the mapping between the reads and the assembly. You don't have to follow these exact commands.

minimap2 -ax map-ont -t 32 shasta_assembly.fa reads.fq | samtools view -hb -q 60 -F 0x904 > unsorted.bam ; samtools sort -@ 32 unsorted.bam | samtools view > reads_2_assembly.0x904q60.bam
samtools index -@32 reads_2_assembly.0x904q60.bam

Step 3: Generate images using MarginPolish

Download Model
helen download_models \
--output_dir <path/to/mp_helen_models/>
Run MarginPolish

You can generate images using MarginPolish by running:

marginpolish reads_2_assembly.bam \
Assembly.fa \
</path/to/model_name.json> \
-t <number_of_threads> \
-o <path/to/marginpolish_images> \
-f

You can find the models by downloading them.

Step 4: Run HELEN

Next, run HELEN to polish using a RNN.

helen polish \
--image_dir </path/to/marginpolish_images/> \
--model_path </path/to/model.pkl> \
--batch_size 256 \
--num_workers 4 \
--threads <num_of_threads> \
--output_dir </path/to/output_dir> \
--output_prefix <output_filename.fa> \
--gpu_mode

If you are using CPUs then remove the --gpu_mode argument.

Help

Please open a github issue if you face any difficulties.

Acknowledgement

We are thankful to Segey Koren and Karen Miga for their help with CHM13 data and evaluation.

We downloaded our data from Telomere-to-telomere consortium to evaluate our pipeline against CHM13.

We acknowledge the work of the developers of these packages:

Fun Fact

guppy235 guppy235

The name "HELEN" is inspired from the A.I. created by Tony Stark in the Marvel Comics (Earth-616). HELEN was created to control the city Tony was building named "Troy" making the A.I. "HELEN of Troy".

READ MORE: HELEN

© 2020 Kishwar Shafin, Trevor Pesout, Benedict Paten.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

helen-0.0.23.tar.gz (3.2 MB view details)

Uploaded Source

Built Distribution

helen-0.0.23-cp36-cp36m-macosx_10_9_x86_64.whl (526.2 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file helen-0.0.23.tar.gz.

File metadata

  • Download URL: helen-0.0.23.tar.gz
  • Upload date:
  • Size: 3.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191101 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.6.2

File hashes

Hashes for helen-0.0.23.tar.gz
Algorithm Hash digest
SHA256 e59fa207667f1d610dd6f768e8536cc0568a274dd4f7b0df841ee2e4f3e50457
MD5 e733a332b806df4648cd89d4183a7440
BLAKE2b-256 6b827188314a6fbf3bd189fa9356440573086ad634949b8402bee7f387e8aaae

See more details on using hashes here.

File details

Details for the file helen-0.0.23-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: helen-0.0.23-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 526.2 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191101 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.6.2

File hashes

Hashes for helen-0.0.23-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 397eb8f175d22d89fa3a87e16aa06e75e380e92aeefb59b29c4955405b57194d
MD5 9df6a441729361cecc170c8a3fd46c28
BLAKE2b-256 b0ec33d58e92d7ec3f93ebd8bcdf5760d145ac3277269dceeeb332ed7bf7f462

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page