Skip to main content

Python client for requests to heligeo API services

Project description

Project Description

Quickstart

About HELIWARE

Heliware is a Web-GL Powered Geo-Spatial Analytics Platform for developer ,analytics & data Scientist that provides GIS, Web Mapping, and spatial data science tools which help companies to get InSite in just few click using AI, Data Science & Advance Geo-Processing

Contact

For any query please contact rajan@heliware.co.in

Access Free Api-Key

Get free Api-key by sign-up on Heliware Visit Website

Description About heligeo module

heligeo module provides you high level Geoprocessing,Routing,Isochrone and Visualization services.


Routing and Isochrone

  • routes
  • isochrone

Geoprocessing

  • polygon_union
  • polygon_intersection
  • alias_multistring
  • point_buffer
  • line_buffer
  • point_within_polygon
  • crop_geometry_data
  • Polygon_Grid_Creation
  • Find_Polygon_Center_Point
  • Find_Polygon_linestring_inside_a_polygon_or_not
  • crop_polygon_from_linestring
  • distance_between_point
  • boundingbox_geojson_geometry
  • area_of_multipolygon
  • linear_nearest_neighour
  • point_within_polygon_based_on_polygon_properties
  • line_arc_from_point
  • nearest_point_along_line

File conversion

  • shp_to_geojson
  • kml_to_geojson
  • geojson_to_kml
  • obj_to_geojson
  • geo_to_dxf

Visualization without filteration

  • hex_map_from_geojson
  • hex_map_from_csv
  • scatter_map_from_geojson
  • scatter_map_from_csv
  • line_map_from_geojson
  • fill_geo_map_from_geojson
  • density_map_from_geojson
  • density_map_from_csv

Visualization with filteration

  • visualization_from_geojson
  • visualization_from_csv

Requirements

heligeo-py is tested over Python>=3.0

Installation

To install from PyPI, simply use pip: pip install heligeo

How to use

Most of the cases heligeo module accept Polygon,Point,Lisestring data that format must be geojson.

Usage

Basic Example Of Routing Service

By default heligeo support four type of transport mode

  • drive
  • walk
  • bike
  • cycling

Output format

Output always Geojson response

Isochrone Service

image


from heligeo import heliRouteService
apikey = ''
longtitude = [88.3639]
latitude = [22.5726]
transport_mode = "drive" 
isochrone_data = heliRouteService.isochrone(apikey,latitude,longtitude,transport_mode)

Routing Service

image

apikey = ''
transport_mode = "drive" 
direction_coordinates = [[88.3639,22.5726],[72.8777,19.0760]] ### user can use multiple points
route_data = heliRouteService.route(apikey,direction_coordinates,transport_mode)

Basic Example Of Geoprocessing Service

  • heliGeoprocessingService.Union(),heliGeoprocessingService.Intersection() function accept multiple polygon data inside a list.
  • In this example we shown only 2 polygon data

Polygon Union Example

from heligeo import heliGeoprocessingService
apikey = ''
polygon1 = {"type": "FeatureCollection","features":[{
  "type": "Feature",
  "geometry": {
    "type": "Polygon",
    "coordinates": [[[77.4029103817493, 28.36918941103731, 0.0], [77.40184896262588, 28.3722403721131, 0.0][77.39922678901301, 28.37081966588294, 0.0], [77.40030856003351, 28.36816909494472, 0.0], [74029103817493, 28.36918941103731, 0.0]]]
  }}]}
polygon2 = {"type": "FeatureCollection","features":[{
      "type": "Feature",
      "geometry": {
        "type": "Polygon",
        "coordinates": [[[77.40486731638147, 28.36831967535351, 0.0], [77.40416140548453, 28.37080235923333, 0], [77.40218550684746, 28.    3699755298779, 0.0], [77.40187364471585, 28.36769815943599, 0.0], [740486731638147, 28.36831967535351, 0.0]]]
      }}]}
polygon_list = [polygon1,polygon2]
union_data = heliGeoprocessingService.Union(apikey,polygon_list)


Polygon Intersection Example

from heligeo import heliGeoprocessingService
apikey = ''
polygon1 = {"type": "FeatureCollection","features":[{
  "type": "Feature",
  "geometry": {
    "type": "Polygon",
    "coordinates": [[[77.4029103817493, 28.36918941103731, 0.0], [77.40184896262588, 28.3722403721131, 0.0][77.39922678901301, 28.37081966588294, 0.0], [77.40030856003351, 28.36816909494472, 0.0], [74029103817493, 28.36918941103731, 0.0]]]
  }}]}
polygon2 = {"type": "FeatureCollection","features":[{
      "type": "Feature",
      "geometry": {
        "type": "Polygon",
        "coordinates": [[[77.40486731638147, 28.36831967535351, 0.0], [77.40416140548453, 28.37080235923333, 0], [77.40218550684746, 28.    3699755298779, 0.0], [77.40187364471585, 28.36769815943599, 0.0], [740486731638147, 28.36831967535351, 0.0]]]
      }}]}
polygon_list = [polygon1,polygon2]
intersection_data = heliGeoprocessingService.Intersection(apikey,polygon_list)

PointBuffer Example

image

  • point_list accept multiple points data
apikey = ''
point_list = [[88.3639,22.5726]] ### user can user multiple Point inside a list 
area = 100  ### how area user want to conver from this point by default its meter
point_buffer_polygon=heliGeoprocessingService.PointBuffer(apikey,point_list,area)


CropPolygonusingLineString Example

  • pp accept one polygon geojson data.
  • ls accept only single LineString geojson data.
apikey = ''
pp = {"type":"FeatureCollection","features":[{"type":"Feature","geometry":{"type":"Polygon","coordinates":[[[73.1191291041643,25.952161948461686],[73.1200261730937,25.95228141045213],[73.11998606278118,25.95249650900002],[73.1205147037379,25.952710699675958],[73.12058570338387,25.952860896463314],[73.12191931762833,25.953218219496392],[73.12201576873873,25.95292092059184],[73.12389940677676,25.953301946008786],[73.12434583885353,25.952337442082705],[73.12331303549425,25.952100144258512],[73.12258837500113,25.952099041426823],[73.12231284277169,25.952120347130396],[73.12199795253532,25.952887517224518],[73.12231350066179,25.95207889035184],[73.12043239077273,25.951540309982462],[73.11918985318253,25.951225622673974],[73.1191291041643,25.952161948461686]]]},"properties":{"prop0":"value0","prop1":{"this":"that"}}}]
 
ls = {"type":"FeatureCollection","features":[{"type":"Feature","geometry":{"type":"LineString","coordinates":[[73.1200261730937,25.95228141045213],[73.12043239077273,25.951540309982462],[73.12043239077273,25.951540309982462]]},"properties":{"prop0":"value0","prop1":{"this":"that"}}}]}
linestring_buffer_polygon=heliGeoprocessingService.crop_polygon_using_linestring(apikey,pp,ls)

LineBuffer Example

image

  • linestring_point_list accept multiple linestring.
apikey = ''
linestring_point_list = [[[88.3639,22.5726],[88.4143,22.5797]],[[88.2636,22.5958],[88.4789,22.7248]]] ### usecan  user multiple Point inside a list 
area = 100  ### how area user want to conver from this point by default its meter
linestring_buffer_polygon=heliGeoprocessingService.LineBuffer(apikey,linestring_point_list,area)

PointWithinPoly Example

apikey = ''
point_geojson_object = {"type":"FeatureCollection","features":[{"type":"Feature","geometry":                {"type":"Point","coordinates":[76.95513342,28.46301607]}}]}
polygon_list = [polygon1,polygon2]
point_inside_poly = heliGeoprocessingService.PointWithinPoly(apikey,point_geojson_object,polygon_list)


Polygon and Linestring WithinPoly Example

apikey = ''
pp = {} #polygon geojson data
cp = [{},{},{}] # list of multiple geometry data(Polygon,LineString)
res=heliGeoprocessingService.check_polygon_ls_within_poly(apikey,pp,cp)


LineBuffer Example

image

  • linestring_point_list accept multiple linestring.
apikey = ''
linestring_point_list = [[[88.3639,22.5726],[88.4143,22.5797]],[[88.2636,22.5958],[88.4789,22.7248]]] ### usecan  user multiple Point inside a list 
area = 100  ### how area user want to conver from this point by default its meter
linestring_buffer_polygon=heliGeoprocessingService.LineBuffer(apikey,linestring_point_list,area)

AliasLinestring Example

image

apikey = ''
linestring_geojson_object = {"type": "FeatureCollection","features":[{"type": "Feature","geometry{"type":"LineString",
    "coordinates": [
      [88.3639,22.5726],[88.4143,22.5797]
    ]}}]}
gap = 100 #gap between multiple linestring(meter)
quantity = 100 ## how many line string u need 
alias_linestring_data = heliGeoprocessingService.AliasLinestring(apikey,linestring_geojson_object,gap,quantity)

CropGeometryData

  • CropGeo fuction accept a Polygon GeoJson data and crop other geometry data based on the Polygon Size.
  • CropGeo accept bb={} contain Polygon Geojson data in which size u want to crop other geometry and gd={[]} contain all the getometry data which u want to crop gd list contain Polygon,Linestring and point data. Data must be GeoJson format.
  • CropGeo supported only Polygon,Linestring and point data in Geojson format
apikey = ''
bb = {"type":"FeatureCollection","features":[{"type":"Feature","geometry":{"type":"Polygon","coordinates":[[[76.76781345955712,30.524042786522788],[76.76658493660516,30.521411933136562],[76.76638374787312,30.520437335225605],[76.76812128413364,30.519991051100444],[76.76935817172217,30.5235212331106],[76.76781345955712,30.524042786522788]]]},"properties":{"PERIMETER":"1.166km","ENCLOSED_AREA":"0.0727sqkm"}}]}

gd = [{"type":"FeatureCollection","features":[{"type":"Feature","geometry":{"type":"LineString","coordinates":[[76.76605941690902,30.521077391710715],[76.76854013805993,30.52031431912859],[76.76854013805993,30.52031431912859]]},"properties":{"LENGTH":"252.68m","BEARING":"1093333.9"}},{"type":"Feature","geometry":{"type":"LineString","coordinates":[[76.76629027392768,30.521865657532633],[76.76849050129871,30.521044858531493],[76.768764809871,30.520962819202154],[76.768764809871,30.520962819202154]]},"properties":{"LENGTH":"257.8m","BEARING":"112514.9"}},{"type":"Feature","geometry":{"type":"LineString","coordinates":[[76.76897591153649,30.52205540468611],[76.76691180534269,30.522839498623096],[76.76691197785424,30.522849031168167]]},"properties":{"LENGTH":"217.4m","BEARING":"2935656.9"}},{"type":"Feature","geometry":{"type":"LineString","coordinates":[[76.76727709618594,30.523549659635112],[76.76936689485044,30.52278710560935],[76.76936689485044,30.52278710560935]]},"properties":{"LENGTH":"217.66m","BEARING":"1125115.1"}}]}]

crop_data = heliGeoprocessingService.CropGeo(apikey,bb,gd)

Polygon Grid Creation Example

  • PolyGrid function accept three parameter apikey, polygon_geo_json_data and grid-size.
  • Based on the grid size PolyGrid function break down the parent poly into small grids.
  • PolyGrid accept only polygon geojson data.
apikey = ''

polygon_geo_json_data = {"type":"FeatureCollection","features":[{"type":"Feature","properties":{},"geometry":{"type":"Polygon","coordinates":[[[76.9720448,28.4914468],[76.9734664,28.490094],[76.9745038,28.4891069],[76.9777595,28.4865896],[76.9832406,28.4847617],[76.9877826,28.4817885],[76.9994099,28.4931639],[76.9958932,28.49571],[76.9958867,28.4995722],[76.993081,28.5026631],[76.9897562,28.5047863],[76.9854207,28.5071706],[76.979788,28.501845],[76.9762078,28.4984432],[76.9720448,28.4914468]]]}}]}

gridsize = 3 # in meter user change value as per user choice
poly_grid_data = heliGeoprocessingService.PolyGrid(apikey,polygon_geo_json_data,gridsize)

Find Polygon Center Point Example

  • PolyCenter accept two parameter apikey and list_of_polygon_data=[polygeojson1,polygeojson1...n].

  • PolyCenter function accept only multiple polygon data in geojson format.

  • list_of_polygon_data its a list of multiple polygon data that must be geojson format

apikey = ''

list_of_polygon_data = [{"type":"FeatureCollection","features":[{"type":"Feature","properties":{},"geometry":{"type":"Polygon","coordinates":[[[76.9720448,28.4914468],[76.9734664,28.490094],[76.9745038,28.4891069],[76.9777595,28.4865896],[76.9832406,28.4847617],[76.9877826,28.4817885],[76.9994099,28.4931639],[76.9958932,28.49571],[76.9958867,28.4995722],[76.993081,28.5026631],[76.9897562,28.5047863],[76.9854207,28.5071706],[76.979788,28.501845],[76.9762078,28.4984432],[76.9720448,28.4914468]]]}}]},{"type":"FeatureCollection","features":[{"type":"Feature","properties":{},"geometry":{"type":"Polygon","coordinates":[[[76.9720448,28.4914468],[76.9734664,28.490094],[76.9745038,28.4891069],[76.9777595,28.4865896],[76.9832406,28.4847617],[76.9877826,28.4817885],[76.9994099,28.4931639],[76.9958932,28.49571],[76.9958867,28.4995722],[76.993081,28.5026631],[76.9897562,28.5047863],[76.9854207,28.5071706],[76.979788,28.501845],[76.9762078,28.4984432],[76.9720448,28.4914468]]]}}]},{"type":"FeatureCollection","features":[{"type":"Feature","properties":{},"geometry":{"type":"Polygon","coordinates":[[[76.9720448,28.4914468],[76.9734664,28.490094],[76.9745038,28.4891069],[76.9777595,28.4865896],[76.9832406,28.4847617],[76.9877826,28.4817885],[76.9994099,28.4931639],[76.9958932,28.49571],[76.9958867,28.4995722],[76.993081,28.5026631],[76.9897562,28.5047863],[76.9854207,28.5071706],[76.979788,28.501845],[76.9762078,28.4984432],[76.9720448,28.4914468]]]}}]}]

poly_center_point = heliGeoprocessingService.PolyCenter(apikey,list_of_polygon_data)

Find distance between two Point Example

  • distance_between_point accept two parameters apikey and list of two point
  • distance_between_point support only point geometry
apikey = ''
point1 = [23,45]
point2 = [24,46]
points = [point1,point2]
distance_btw = heliGeoprocessingService.distance_between_point(apikey,points)

Find bounding box geojson geometry Example

  • boundingbox_geojson accept two parameters apikey and geojson_data_of_geometry
  • boundingbox_geojson support all type of geometry Point, MultiPoint, LineString, MultiLineString, Polygon, MultiPolygon.
  • Output will be bounding box Polygon data of geojson format
apikey = ''
geo_data = {
  "type": "FeatureCollection",
  "features": [
    {
      "type": "Feature",
      "geometry": {
        "type": "MultiPolygon",
        "coordinates": [
          [[[77.03171253204346, 28.45861799583438], [77.0447587966919, 28.458316159251893], [77.05158233642578, 28.451109554935286], [77.04231262207031, 28.444883558900028], [77.02840805053711, 28.450505838034935], [77.03171253204346, 28.45861799583438]]],[[[77.03707695007324, 28.455335476723302], [77.03630447387695, 28.452166051216853], [77.04136848449707, 28.45163780439558], [77.04145431518555, 28.455033630768483], [77.03707695007324, 28.455335476723302]]]
        ]
      },
      "properties": {
        "service_provider": "HELIWARE",
        "timestamp": "20",
        "color": "black",
        "stroke": "red",
        "stroke-opacity": 0.4,
        "stroke-width": 5,
        "rev":200000,
        "pop":20
      }
    }
  ]}
bounding_box_data = heliGeoprocessingService.boundingbox_geojson(apikey,geo_data)

Find area of multipolygons geometry Example

  • area_multipolygon accept two parameters apikey and geojson_data_of_geometry
  • area_multipolygon supported geometry Polygon, MultiPolygon.
  • output will be dictionary contain total area and unit of area, example: {"Area": poly_area,"Unit":"Meter Square(Sq m)"}
apikey = ''
geo_data = {
  "type": "FeatureCollection",
  "features": [
    {
      "type": "Feature",
      "geometry": {
        "type": "MultiPolygon",
        "coordinates": [
          [[[77.03171253204346, 28.45861799583438], [77.0447587966919, 28.458316159251893], [77.05158233642578, 28.451109554935286], [77.04231262207031, 28.444883558900028], [77.02840805053711, 28.450505838034935], [77.03171253204346, 28.45861799583438]]],[[[77.03707695007324, 28.455335476723302], [77.03630447387695, 28.452166051216853], [77.04136848449707, 28.45163780439558], [77.04145431518555, 28.455033630768483], [77.03707695007324, 28.455335476723302]]]
        ]
      },
      "properties": {
        "service_provider": "HELIWARE",
        "timestamp": "20",
        "color": "black",
        "stroke": "red",
        "stroke-opacity": 0.4,
        "stroke-width": 5,
        "rev":200000,
        "pop":20
      }
    }
  ]}
geo_area = heliGeoprocessingService.area_multipolygon(apikey,geo_data)

Find linear nearest neighour point from given point Example

  • linear_nearest_neighour accept three parameters apikey, point_data and mark_point
  • mark_point is a point from which to find nearest point linearly from point_data
  • point_data in linear_nearest_neighour only support point geometry.
  • output will be geojson format data of nearest point geometry with distance property
apikey = ''
point_data = {"type": "FeatureCollection",
  "features": [{"type": "Feature",
      "properties": {},
      "geometry": {
        "type": "Point",
        "coordinates": [
            40.8193359375,
            25.64152637306577]},
     "properties": {
        "name": 10
      }},
    {"type": "Feature",
      "properties": {},
      "geometry": {
        "type": "Point",
        "coordinates": [
            41.17968749994,
            23.644524198573688]},
     "properties": {
        "name": 20
      }},
    {"type": "Feature",
      "properties": {},
      "geometry": {
        "type": "Point",
        "coordinates": [
            44.4130859375,
            25.760319754713887]},
     "properties": {
        "name": 30
      }}]}
mark_point = [42.6160,24.7518]

nearest_point = heliGeoprocessingService.linear_nearest_neighour(apikey,point_data,mark_point)

Find points withen Polygon based on Polygon properties Example

  • point_within_polygon accept three parameters apikey, polygon_data and scale
  • Input is geojson data of polygon or multipolygon and property scale to render points based on properties
  • scale is ['{property name}':{scale_value}], same property name should also in polygon property, where scale_value in scale and polygon_data must be integer.
  • output will be in geojson format data of all point geometry within a polygon/multipolygon with properties
  • polygon_data only support Polygon and MultiPolygon geometry.
apikey = ''
polygon_data = {"type": "FeatureCollection",
  "features": [{"type": "Feature",
      "geometry": {
        "type": "Polygon",
        "coordinates": [
          [[77.03968405723572,
              28.448081502646776],
            [77.03970551490784,
              28.44760040224489],
            [77.04024195671082,
              28.447562668787487],
            [77.04019904136658,
              28.448090935966118],
            [77.03968405723572,
              28.448081502646776]
          ]]},
	  "properties": {
        "service_provider": "HELIWARE",
        "timestamp": "5",
        "color": "black",
        "stroke": "red",
        "stroke-opacity": 0.4,
        "stroke-width": 5,
        "rev":800000,
        "area":12
      }}]}
scale = {"area":5}
points_poly = heliGeoprocessingService.point_within_polygon(apikey,polygon_data,scale)
  • output has 2 point in polygon, polygon has area 12 and scale provide area 5, points define numbers of parts in polygon with area 5

Create line arc from point Example

  • line_arc_from_point accept three parameters apikey, point_data and measure
  • line_arc_from_point return geometry data to Creates a circular arc of the given radius and center point between angle1 and angle2, angle work in positive clockwise.
  • Input is geojson data of point and measurements of radius, angle1, angle2 in one list
  • example of measurements will be measure=[{raduis},{angle1},{angle2}]
  • output will be in geojson format of all linestring geometry data for creating line arc
  • point_data only support Point geometry.
apikey = ''
point_data = {"type": "FeatureCollection",
  "features": [{"type": "Feature",
      "geometry": {
        "type": "Polygon",
        "coordinates": [
          [[77.03968405723572,
              28.448081502646776],
            [77.03970551490784,
              28.44760040224489],
            [77.04024195671082,
              28.447562668787487],
            [77.04019904136658,
              28.448090935966118],
            [77.03968405723572,
              28.448081502646776]
          ]]},
	  "properties": {
        "service_provider": "HELIWARE",
        "timestamp": "5",
        "color": "black",
        "stroke": "red",
        "stroke-opacity": 0.4,
        "stroke-width": 5,
        "rev":800000,
        "area":12
      }}]}
measure = [0.1,10,20]
line_arc = heliGeoprocessingService.line_arc_from_point(apikey,point_data,measure)

Find nearest point along line Example

  • nearest_point_along_line accept three parameters apikey, line_data and url
  • nearest_point_along_line return point geometry data of points which is nearest to line and also along to line, where line belongs to line_data
  • line_data is geojson of LineString and url contain Point geometry data
  • output will be in geojson format of all point geometry data which is nearest and along to LineString
apikey = ''
line_data = {"type": "FeatureCollection",
  "features": [{"type": "Feature",
      "properties": {},
      "geometry": {
        "type": "LineString",
        "coordinates": [
        [78.0029296875,
            25.799891182088334],
          [77.51953125,
            19.269665296502332]]
      }}]}
url = "https://raw.githubusercontent.com/mukulsharma97/Heliware_Visualization/main/assets/point_along.geojson"
n_point = heliGeoprocessingService.nearest_point_along_line(apikey,line_data,url)

Basic Example of File conversion Service

shp_to_geojson Example

  • shp_file input shpe file name with complete path
  • geojson_file output geojson file name with complete path
from heligeo import heliconverter
shp_file = ".../heligeo_converter/lines.shp"
geojson_file = ".../heligeo_converter/shptogeo.geojson"
heliconverter.shp_to_geojson(shp_file,geojson_file)

kml_to_geojson Example

  • kmlf input kml file name with complete path
  • geof output geojson file path
kmlf = ".../heligeo_converter/kml.kml"
geof = ".../heligeo_converter/kmltogeo"
heliconverter.kml_to_geojson(kmlf,geof)

geojson_to_kml Example

  • geof input geojson file name with complete path
  • kmlf output kml file name with complete path
kmlf = ".../heligeo_converter/geotokml.kml"
geof = ".../heligeo_converter/isochrone.geojson"
heliconverter.geojson_to_kml(geof,kmlf)

obj_to_geojson Example

  • obj input object file name with complete path
  • geof output geojson file name with complete path
obj = ".../heligeo_converter/mesh.obj"
geof = ".../heligeo_converter/objtogeo.geojson"
heliconverter.obj_to_geojson(obj,geof)

geo_to_dxf Example

  • geof input geojson file name with complete path
  • dwgf output dxf file name without extension and with complete path
geof = ".../heligeo_converter/multilinestring.geojson"
dwgf = ".../heligeo_converter/poly_line_point"
heliconverter.geo_to_dxf(geof,dwgf)

Basic Example Of Visualization Service

Hexagon Map

image

  • User Can Select Different type of BaseMap Like basic, streets,outdoors, light, dark, satellite, or satellite-streets
  • User can Create hex_map from .geojon and .csv file
  • File Must be contain geometry data
  • hex_map_from_geojson funtion accepty .geojson file with other parameter and hex_map_from_csv accept .csv file with other parameter.
  • hex_map_from_geojson accept apikey,file_path,hover_properties,basemap_style,hexagon_quantity,zoom_level
  • hex_map_from_csv accept apikey,file_path,column name from csv file that contain latitude value,column name from csv file that contain longtitude value,hover_properties,basemap_style,hexagon_quantity,zoom_level
  • As of Now heligeo module able to visualize only one propertie with their corrosponding Lat,Long value
  • Base_map=''
  • Use res.show() to visualize the data into web.
  • for hex_map_from_geojson user dont need to pass this two parameter column name that contain latitude value,column name that contain longtitude value we create these two value as our own.

Example

from heligeo import heliVisualizationService
apikey=''
file_path = '' 
latitude_value_col_name = ''
longtitude_value_col_name = ''
hover_properties = ''
base_map = ''
hexagan_quantity = 20  
zoom_level = 16
h = heliVisualizationService.hex_map_from_csv(apikey,file_path,latitude_value_col_name,longtitude_value_col_name,hover_properties,base_map,hexagan_quantity,zoom_level)
h.show()

h = heliVisualizationService.hex_map_from_geojson(apikey,file_path,hover_properties,base_map,hexagan_quantity,zoom_level)
h.show()

Scatter Map

image

  • User Can Select Different type of BaseMap Like basic, streets, outdoors, light, dark, satellite, or satellite-streets

  • User can Create scatter_map from .geojson and .csv file

  • File Must be contain geometry data

  • scatter_map_from_geojson funtion accept .geojson file with other parameter and scatter_map_from_csv accept .csv file with other parameter.

  • scatter_map_from_geojson accept apikey,file_path,hover_properties,basemap_style,zoom_level

  • scatter_map_from_csv accept apikey,file_path,column name from csv file that contain latitude value,column name from csv file that contain longtitude value,hover_properties,basemap_style,zoom_level

  • As of Now heligeo Visualization module able to visualize only one propertie with their corrosponding Lat,Long value

  • Use res.show() to visualize the data into web.

  • for scatter_map_from_geojson user dont need to pass this two parameter column name that contain latitude value,column name that contain longtitude value we create these two value as our own.

Example

from heligeo import heliVisualizationService
apikey=''
file_path = '' 
latitude_value_col_name = ''
longtitude_value_col_name = ''
hover_properties = ''
base_map = ''  
zoom_level = 16
h = heliVisualizationService.scatter_map_from_csv(apikey,file_path,latitude_value_col_name,longtitude_value_col_name,hover_properties,base_map,zoom_level)
h.show()

h = heliVisualizationService.scatter_map_from_geojson(apikey,file_path,hover_properties,base_map,zoom_level)
h.show()


Density Map

image

  • User Can Select Different type of BaseMap Like basic, streets, outdoors, light, dark, satellite, or satellite-streets

  • User can Create density_map from .geojson and .csv file

  • File Must be contain geometry data

  • density_map_from_geojson funtion accept .geojson file with other parameter and density_map_from_csv accept .csv file with other parameter.

  • density_map_from_geojson accept apikey,file_path,hover_properties,basemap_style,zoom_level

  • density_map_from_csvacceptapikey,file_path,column name from csv file that contain latitude value,column name from csv file that contain longtitude value,hover_properties,basemap_style,zoom_level`

  • As of Now heligeo Visualization module able to visualize only one propertie with their corrosponding Lat,Long value

  • Use res.show() to visualize the data into web.

  • for density_map_from_geojson user dont need to pass this two parameter column name that contain latitude value,column name that contain longtitude value we create these two value as our own.

Example

from heligeo import heliVisualizationService
apikey=''
file_path = '' 
latitude_value_col_name = ''
longtitude_value_col_name = ''
hover_properties = ''
base_map = ''  
zoom_level = 16
h = heliVisualizationService.density_map_from_csv(apikey,file_path,latitude_value_col_name,longtitude_value_col_name,hover_properties,base_map,zoom_level)
h.show()

h = heliVisualizationService.density_map_from_geojson(apikey,file_path,hover_properties,base_map,zoom_level)
h.show()

Line Map

image

  • User Can Select Different type of BaseMap Like basic, streets, outdoors, light, dark, satellite, or satellite-streets
  • User can Create line_map from .geojson.
  • line_map_from_geojson funtion accept .geojson file with other parameter.
  • density_map_from_geojson accept apikey,file_path,hover_properties,basemap_style,zoom_level
  • As of Now heligeo Visualization module able to visualize only one propertie with their corrosponding Lat,Long value
  • Use res.show() to visualize the data into web.

Example

from heligeo import heliVisualizationService
apikey=''
file_path = '' 
hover_properties = ''
base_map = ''  
zoom_level = 15
h = heliVisualizationService.line_map_from_geojson(apikey,file_path,hover_properties,base_map,zoom_level)
h.show()

Fill Geometry With Color

image

  • User Can Select Different type of BaseMap Like open-street-map, carto-positron, carto-darkmatter, stamen-terrain, stamen-toner or stamen-watercolor
  • User can fill a Geometry with different color and Visualize on map.
  • fill_geo_map_from_geojson funtion accept .geojson file with other parameter.
  • fill_geo_map_from_geojson accept apikey,file_path,color,basemap_style,zoom_level
  • As of Now heligeo Visualization module able to visualize only one propertie with their corrosponding Lat,Long value
  • Use res.show() to visualize the data into web.

Example

from heligeo import heliVisualizationService
apikey=''
file_path = '' 
color = ''
base_map = ''  
zoom_level = 15
h = heliVisualizationService.fill_geo_map_from_geojson(apikey,file_path,color,base_map,zoom_level)
h.show()

Visualization with filteration

image

  • As of now our module accept 10 features,filteration functionality
  • once you call the module its automatically create localserver localhost:8085
  • Paste the local host address on browser
  • Select a Map type

visualization from geojson

  • User Can Select Different type of BaseMap Like basic, streets, outdoors, light, dark, satellite, or satellite-streets
  • User can filter the data in real time
  • visualization_from_geojson function accept file_path,hover_properties,BaseMap(optional)

Example

from heligeo import heliVisualizationWithFilteration
file_path = '' ## local csv file path
hover_properties = '' ## based on this property our module will create map
heliVisualizationWithFilteration.visualization_from_geojson(file_path,hover_properties)

visualization from csv

  • User Can Select Different type of BaseMap Like basic, streets, outdoors, light, dark, satellite, or satellite-streets
  • once you call the module its automatically create localserver localhost:8085
  • User can filter the data in real time
  • visualization_from_geojson function accept file_path,lat_column_name,long_column_name,hover_properties,BaseMap(optional)

Example

from heligeo import heliVisualizationWithFilteration
file_path = '' ## local csv file path
lat_column_name = ''
long_column_name = ''
hover_properties = '' ## based on this property map will create

heliVisualizationWithFilteration.visualization_from_csv(file_path,lat_column_name,long_column_name,hover_properties)

License

© 2021 HELIWARE

This repository is licensed under the MIT license. See LICENSE for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

heligeo-1.1.10.tar.gz (34.9 kB view details)

Uploaded Source

Built Distribution

heligeo-1.1.10-py3-none-any.whl (21.7 kB view details)

Uploaded Python 3

File details

Details for the file heligeo-1.1.10.tar.gz.

File metadata

  • Download URL: heligeo-1.1.10.tar.gz
  • Upload date:
  • Size: 34.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.10.0 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/1.0.0 urllib3/1.26.19 tqdm/4.64.1 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.13

File hashes

Hashes for heligeo-1.1.10.tar.gz
Algorithm Hash digest
SHA256 0952b78b2ad3b571708ca2745599e0fb0b241d3eff79e272e1f203a6f24b8d3f
MD5 97dd2bae96fa24f5bbf170866819413d
BLAKE2b-256 5e225af5c2223f29bcab71d2e08020d21ab9063533a57fb2a8370c229f170c96

See more details on using hashes here.

File details

Details for the file heligeo-1.1.10-py3-none-any.whl.

File metadata

  • Download URL: heligeo-1.1.10-py3-none-any.whl
  • Upload date:
  • Size: 21.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.10.0 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/1.0.0 urllib3/1.26.19 tqdm/4.64.1 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.13

File hashes

Hashes for heligeo-1.1.10-py3-none-any.whl
Algorithm Hash digest
SHA256 46d51e63d1e15b7ff66cf14759e90da45c88b0d6265b60aa89725fe8bb83660b
MD5 52f6ec1d679f66f424c5f3d19f8e8068
BLAKE2b-256 d8966af20730f58dbc6afebfdde941975d0995e899dd6d078be11a603d356d00

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page