Skip to main content

A collection of useful tools!

Project description

Hello

A collection of useful tools!

pip install hello2

hello.data

python -m hello.data coco2yolo -h

COCO to YOLO

positional arguments:
  coco_dir              dataset root dir

optional arguments:
  -h, --help            show this help message and exit
  -j JSON_DIR, --json_dir JSON_DIR
                        coco json file dir
  --classes CLASSES [CLASSES ...]
                        filter by class: --classes c0 c2 c3

hello.fiftyone

import fiftyone.zoo as foz
from hello.fiftyone.utils import *

# Download and load COCO-2017
label_types = ("detections", "segmentations")
dataset = foz.load_zoo_dataset("coco-2017", label_types=label_types, classes=["cat", "dog"])  # max_samples=100
print(dataset)

# clone sample field
dataset = clone_sample_field(dataset, "detections", "ground_truth")
print(dataset)

# map labels
mapping = {"cat": "CAT", "dog": "DOG", "person": "PERSON", "*": "OTHER"}
cat_dog_person = map_labels(dataset, mapping, "ground_truth")
print(cat_dog_person.count_values("ground_truth.detections.label"))

# filter samples
classes = ["CAT", "DOG", "PERSON"]
cat_dog_person = filter_samples(cat_dog_person, classes, field_name="ground_truth")
print(cat_dog_person.count_values("ground_truth.detections.label"))

# filter labels
classes = ["CAT", "DOG", "PERSON"]
cat_dog_person = filter_labels(cat_dog_person, classes, field_name="ground_truth")
print(cat_dog_person.count_values("ground_truth.detections.label"))

# merge datasets
classes = ["CAT", "DOG", "PERSON", "OTHER"]
info = {"dataset_name": "COCO 2017",
        "version": "1.0"}
big_dataset = merge_datasets("big", classes, info, [cat_dog_person])
print(big_dataset.count_values("tags"))

# split dataset
splits = {"train": 0.8, "val": 0.1}
split_dataset(big_dataset, splits=splits, limit=200, field_name="ground_truth")
print(big_dataset.count_values("tags"))

# export dataset
results = export_dataset("/workspace/tmp/big", big_dataset, "ground_truth")
print(results)

# load dataset
test = load_dataset("/workspace/tmp/big/test", label_field="ground_truth")
print(test.count_values("tags"))

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hello2-0.1.6.tar.gz (11.9 kB view details)

Uploaded Source

Built Distribution

hello2-0.1.6-py3-none-any.whl (12.7 kB view details)

Uploaded Python 3

File details

Details for the file hello2-0.1.6.tar.gz.

File metadata

  • Download URL: hello2-0.1.6.tar.gz
  • Upload date:
  • Size: 11.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.27.1

File hashes

Hashes for hello2-0.1.6.tar.gz
Algorithm Hash digest
SHA256 31706ae112260c0e9f932b4a99e3066b0ea7fe44e386c0c8b0a5a9c3e78a74f1
MD5 76d6ed6ec1151d1623281718c9c4c935
BLAKE2b-256 8b38f217691fc7eece918ec91407a94e23ba04ccf51538f06cad2fcb038134e2

See more details on using hashes here.

File details

Details for the file hello2-0.1.6-py3-none-any.whl.

File metadata

  • Download URL: hello2-0.1.6-py3-none-any.whl
  • Upload date:
  • Size: 12.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.27.1

File hashes

Hashes for hello2-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 4b05dbd79fb218763a4c9577f22684e3e33261db97302c441bf919f9edf0321a
MD5 676cb470c4f2ed0263b84c0efe8b2397
BLAKE2b-256 489e63aa2f509eab706a441f40bca5f0dc51117f466412b5775b637f04d95a06

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page