Skip to main content

A collection of useful tools!

Project description

Hello

A collection of useful tools!

Publish

hello2 · PyPI

# https://github.com/pypa/flit
flit publish

Environment

conda info -e
conda create -y -n myenv python=3.9
conda activate myenv

# pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
pip install notebook

conda deactivate
conda remove -y -n myenv --all
conda info -e

Installation

# requirements.txt
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
pip install opencv-python Pillow scikit-image scikit-learn simplejson onnx

# FFmpeg
apt install -y ffmpeg
conda install -c pytorch ffmpeg
conda install -c conda-forge ffmpeg

# OpenCV
pip uninstall -y opencv-python-headless
pip install opencv-python --ignore-installed

# fiftyone
pip install fiftyone==0.16.5
pip install fiftyone[desktop]==0.16.5
## $ conda list | grep voxel
## voxel51-eta               0.7.1                    pypi_0    pypi
## $ conda list | grep fiftyone
## fiftyone                  0.16.5                   pypi_0    pypi
## fiftyone-brain            0.8.2                    pypi_0    pypi
## fiftyone-db               0.3.0                    pypi_0    pypi

# pyomniunwarp
pip install -U pyomniunwarp>=0.2.4

# onnxruntime (optional)
pip install onnx onnx-simplifier onnxruntime  # CPU
pip install onnx onnx-simplifier onnxruntime-gpu  # GPU

# PyTorch 1.10.2 (optional)
pip install torch==1.10.2+cu113 torchvision==0.11.3+cu113 -f https://download.pytorch.org/whl/torch_stable.html

# PyTorch 1.12.1 (optional)
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113

# hello
pip install -U hello2
pip install -U hello2 -i https://pypi.org/simple
pip install -U hello2 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install -U 'git+https://github.com/flystarhe/hello'

Usage

hello-data

  • hello-data coco2yolo -h
    • COCO format to YOLOv5

hello-fiftyone

hello-onnx

hello-video

  • hello-video clip -h
  • hello-video frames -h

hello-x3m

  • hello-x3m preprocess -h
    • 为X3M量化步骤生成校准数据
  • hello-x3m config -h
    • 为X3M编译步骤生成配置文件

Project details


Release history Release notifications | RSS feed

This version

0.2.8

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hello2-0.2.8.tar.gz (35.9 kB view details)

Uploaded Source

Built Distribution

hello2-0.2.8-py3-none-any.whl (53.7 kB view details)

Uploaded Python 3

File details

Details for the file hello2-0.2.8.tar.gz.

File metadata

  • Download URL: hello2-0.2.8.tar.gz
  • Upload date:
  • Size: 35.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.27.1

File hashes

Hashes for hello2-0.2.8.tar.gz
Algorithm Hash digest
SHA256 f85ea277dac391376023efd8e4df165048eb9b8de9b23e0dbbec892f43120e8b
MD5 8384e0288c4303f4452949f137f09def
BLAKE2b-256 07da53a6bf182015133112e6d94180a2d98881462b15d0a1772e834d0ee0b57b

See more details on using hashes here.

File details

Details for the file hello2-0.2.8-py3-none-any.whl.

File metadata

  • Download URL: hello2-0.2.8-py3-none-any.whl
  • Upload date:
  • Size: 53.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.27.1

File hashes

Hashes for hello2-0.2.8-py3-none-any.whl
Algorithm Hash digest
SHA256 c8a322980cf59b52f32f95ad16417c7159c196fe8d9f6c7660d2e1faf7033b02
MD5 63503d8413482d72ab69775cbc5c6cee
BLAKE2b-256 b10ffef0dac206d84c85964f1ccc073df701c28c40ace657a6fc2e7cc078a4e6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page