Skip to main content

A Hermite function series module.

Project description

Hermite Function Series

A Hermite function series package.

from hermitefunction import HermiteFunction
import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(-4, +4, 1000)
for n in range(5):
    f = HermiteFunction(n)
    plt.plot(x, f(x), label=f'$h_{n}$')
plt.legend(loc='lower right')
plt.show()

png

Installation

pip install hermite-function

Usage

This package provides a single class, HermiteFunction, to handle Hermite function series. A series can be initialized in three ways:

  • With the constructor HermiteFunction(coef), that takes a non-negative integer to create a pure Hermite function with the given index, or an iterable of coefficients to create a Hermite function series.
  • With the random factory HermiteFunction.random(deg) for a random Hermite series of a given degree.
  • By fitting data with HermiteFunction.fit(x, y, deg). The objects are immutable (coefficients are internally stored in a tuple).
f = HermiteFunction((1, 2, 3))
g = HermiteFunction.random(15)
h = HermiteFunction.fit(x, g(x), 10)
plt.plot(x, f(x), label='$f$')
plt.plot(x, g(x), '--', label='$g$')
plt.plot(x, h(x), ':', label='$h$')
plt.legend()
plt.show()

png The container interface is implemented so the coefficients can be

  • accessed by indexing: f[2] (coefficients not set return to 0),
  • iterated over: for c in f (stops at last set coefficient),
  • counted: len(f) (number of set coefficients),
  • compared: f == g (tuple of coefficients get compared) &
  • shifted: f >> 1, f << 2.

Methods for functions:

  • evaluation with f(x),
  • differentiation to an arbitrary degree f.der(n) &
  • getting the degree of the series f.deg are implemented.
f_p = f.der()
f_pp = f.der(2)
plt.plot(x, f(x), label=rf"$f \ (\deg f={f.deg})$")
plt.plot(x, f_p(x), '--', label=rf"$f' \ (\deg f'={f_p.deg})$")
plt.plot(x, f_pp(x), ':', label=rf"$f'' \ (\deg f''={f_pp.deg})$")
plt.legend()
plt.show()

png Hilbert space operations are also provided, where the Hermite functions are used as an orthonormal basis of the $L_\mathbb{R}^2$ space:

  • Vector addition & subtraction f + g, f - g,
  • scalar multiplication & division 2 * f, f / 2,
  • inner product & norm f @ g, abs(f).
g = HermiteFunction(4)
h = f + g
i = 0.5 * f
plt.plot(x, f(x), label='$f$')
plt.plot(x, g(x), '--', label='$g$')
plt.plot(x, h(x), ':', label='$h$')
plt.plot(x, i(x), '-.', label='$i$')
plt.legend()
plt.show()

png Because this package was intended as a tool to work with quantum mechanical wavefunctions, the expectation value for the kinetic energy is also implemented ($\langle\hat{P}^2\rangle=\frac{1}{2}\int_\mathbb{R}f^*(x)f''(x)dx$, natural units):

f.kin

Proofs

In the following let

$$ f=\sum_{k=0}^\infty f_k h_k, \ g=\sum_{k=0}^\infty g_k h_k. $$

where $h_k$ are the Hermite functions, defined by the Hermite polynomials $H_k$:

$$ h_k(x) = \frac{e^{-\frac{x^2}{2}}}{\sqrt{2^kk!\sqrt{\pi}}} H_k(x) $$

from Wikipedia - Hermite functions.

Differentiation

$$ \begin{aligned} f' &= \sum_k f_k h_k' \ &\qquad\mid h'_k = \sqrt{\frac{k}{2}}h_{k-1} - \sqrt{\frac{k+1}{2}}h_{k+1} \ &= \sum_k f_k \left( \sqrt{\frac{k}{2}}h_{k-1} - \sqrt{\frac{k+1}{2}}h_{k+1} \right) \ &= \sum_{k=0}^\infty f_k\sqrt{\frac{k}{2}} h_{k-1} - \sum_{k=0}^\infty f_k\sqrt{\frac{k+1}{2}} h_{k+1} \ &\qquad\mid k-1 \to k, \ k+1 \to k \ &= \sum_{k=-1}^\infty \sqrt{\frac{k+1}{2}}f_{k+1} h_k - \sum_{k=1}^\infty \sqrt{\frac{k}{2}}f_{k-1} h_k \ &\qquad\mid -0+0 = -\sqrt{\frac{-1+1}{2}}f_{-1+1}h_{-1} + \sqrt{\frac{0}{2}}f_{0-1} h_0 \ &= \sum_{k=0}^\infty \sqrt{\frac{k+1}{2}}f_{k+1} h_k - \sum_{k=0}^\infty \sqrt{\frac{k}{2}}f_{k-1} h_k \ &= \sum_k \left( \sqrt{\frac{k+1}{2}}f_{k+1} - \sqrt{\frac{k}{2}}f_{k-1} \right) h_k \end{aligned} $$

With $h'_k=\sqrt{\frac{k}{2}}h_{k+1}-\sqrt{\frac{k+1}{2}}h_{k-1}$ from Wikipedia - Hermite functions.

Integration

With the same relation as above we get

$$ \begin{aligned} h_k' &= \sqrt{\frac{k}{2}}h_{k-1} - \sqrt{\frac{k+1}{2}}h_{k+1} \ &\qquad\mid +\sqrt{\frac{k+1}{2}}h_{k+1} - h_k' \ \sqrt{\frac{k+1}{2}}h_{k+1} &= \sqrt{\frac{k}{2}}h_{k-1} - h_k' \ &\qquad\mid \cdot\sqrt{\frac{2}{k+1}} \ h_{k+1} &= \sqrt{\frac{k}{k+1}}h_{k-1} - \sqrt{\frac{2}{k+1}}h_k' \ &\qquad\mid k+1 \to k \ h_k &= \sqrt{\frac{k-1}{k}}h_{k-2} - \sqrt{\frac{2}{k}}h_{k-1}' \ &\qquad\mid \int \ H_k &= \sqrt{\frac{k-1}{k}}H_{k-2} - \sqrt{\frac{2}{k}}h_{k-1} \end{aligned} $$

which can be applied from the highest to the lowest order. For $h_0$ we then get

$$ H_0(x) = \int_{-\infty}^xh_0(x')dx' = \int_{-\infty}^x\frac{e^{-\frac{x'^2}{2}}}{\sqrt[4]{\pi}}dx' = \sqrt{\frac{\sqrt{\pi}}{2}}\text{erf}\left(\frac{x}{\sqrt{2}}\right) \ \left(+\sqrt{\frac{\sqrt{\pi}}{2}}\right) $$

Kinetic energy

$$ \left\langle\frac{-\hat{P}^2}{2}\right\rangle = -\frac{1}{2}\int_{\mathbb{R}}f^*(x)\frac{d^2}{dx^2}f(x)dx = +\frac{1}{2}\int_{\mathbb{R}}|f'(x)|^2dx = \frac{1}{2}||f'||_{L_{\mathbb{R}}^2}^2 $$

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hermite-function-1.1.tar.gz (5.5 kB view hashes)

Uploaded Source

Built Distribution

hermite_function-1.1-py3-none-any.whl (5.8 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page