Skip to main content

Hestia's Distribution library

Project description

Hestia Data Utils

Utils library to manipulate distributions on the Hestia platform

Install

  1. pip install hestia_earth.distribution
  2. Optional: to generate distribution files, please install pymc 4.

Usage

By default, all output files will be stored under ./data folder. You can set the env variable DISTRIBUTION_DATA_FOLDER to store in a different folder.

To get univariate posterior distribution:

from hestia_earth.distribution.posterior_yield import get_post_ensemble, get_post

# get a single posterior distribution, run:
mu_ensemble, sd_ensemble = get_post_ensemble('GADM-GBR', 'wheatGrain')

# Or, if only instrested in the mean of the mu and sd values, run:
mu, sd = get_post('GADM-GBR', 'wheatGrain')

To calculate the probability of a set of values using bivariate distribution:

from hestia_earth.distribution.utils.MCMC_bivariate import calculate_fit_2d

# get the likelihood of a candidate based on the bivariate distribution between Grain
# yield and Nitrogen fertiliser usage of a given country and a given product, run:
yield_value = 8500
n_use = 200
likelihood = calculate_fit_2d([n_use, yield_value], 'GADM-GBR', 'wheatGrain')

Advance Usage

You can clone this repository to use the commands below.

Generate prior distribution

To generate yield prior file for all products:

python generate_prior_yield.py --overwrite

For more information, run python generate_prior_yield.py --help.

Generate likelihood data

In order to generate likelihood data (a spreadsheet of crop yield and fertiliser data) for a specific product and a specific country, run:

python generate_likelihood.py --product-id="wheatGrain" --country-id="GADM-GBR" --limit=1000

For more information, run python generate_likelihood.py --help.

Generate posterior distribution

  • In order to generate posterior distribution (for Bayesian statistics) for a specific country, run:
python generate_posterior_yield.py --country-id="GADM-GBR"

or to generate the fertiliser usage:

python generate_posterior_fert.py --country-id="GADM-GBR"

or to generate the pesticide usage:

python generate_posterior_pest.py --country-id="GADM-GBR"

Note: all commands above will update the same CSV file so they must not be run at the same time.

Plotting

Prior Yield

To plot prior distribution by product by country:

python plot_prior_yield.py --country-id='GADM-GBR' --product-id='wheatGrain' --output-file='prior.png'

To plot FAO annual yield data, change --type parameter to one of the four options: fao_per_country, fao_per_product, fao_per_country_per_product, world_mu_signma. Example:

python plot_prior_yield.py --country-id='GADM-GBR' --output-file='fao-yield-gbr-allProducts.png' --type='fao_per_country'

For more information, run python plot_prior_yield.py --help.

Cycle Yield

To plot the bivariate distribution of yield data for Wheat, grain in United Kingdom:

python plot_cycle_yield.py --product-id=wheatGrain" --country-id="GADM-GBR" --limit=100

This will take a sample size of 100 and create a result.png file with the distribution.

For more information, run python plot_cycle_yield.py --help.

Posterior Yield

In order to plot the posterior distribution for a specific product and a specific country, run:

python plot_posterior_yield.py --country-id="GADM-GBR" --product-id="wheatGrain" --output-file="post.png"

For more information, run python plot_posterior_yield.py --help.

Plot bivariate distribution between Yield and fetiliser use

In order to plot the bivariate distribution between Yield and N, P or K fetiliser use for a specific product and a specific country, run:

python plot_MCMC_bivariate.py --y=8500 --n=200 --country-id='GADM-GBR' --product-id='wheatGrain' --output='gbr-yield-vs-nitrogen.png'

Or

python plot_MCMC_mv.py --y=8500 --n=200 --p=50 --k=50  --pest=5  --country-id='GADM-GBR' --product-id='wheatGrain' --output='gbr-yield-vs-nitrogen.png'

For more information, run python plot_MCMC_bivariate.py --help.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hestia-earth-distribution-0.1.0.tar.gz (27.2 kB view details)

Uploaded Source

Built Distribution

hestia_earth_distribution-0.1.0-py3-none-any.whl (47.7 kB view details)

Uploaded Python 3

File details

Details for the file hestia-earth-distribution-0.1.0.tar.gz.

File metadata

File hashes

Hashes for hestia-earth-distribution-0.1.0.tar.gz
Algorithm Hash digest
SHA256 368725796d95576fef877ac4097e71f5c69eefb294abcc6adc69bff0b9d72242
MD5 1ebfa42fbc49a72bc34acf470a7263a5
BLAKE2b-256 28dfd2053c4fea501d1a39e107411b20402c2d9b386d3d3d5b643b3e75ecb3e9

See more details on using hashes here.

File details

Details for the file hestia_earth_distribution-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for hestia_earth_distribution-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8d75289adc2ee6ae24b8cb756cc51ea311dc1d429a45097b3348daa54eb9c8ee
MD5 38b02bfb367b4d3fc89799eba2fda2a6
BLAKE2b-256 697aee3624d201e9e39977b672cc813b86264fe50a0e15fa3f85e5d7c6cc55a3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page