Skip to main content

Suite of tools for analysing the independence between training and evaluation biosequence datasets and to generate new generalisation-evaluating hold-out partitions

Project description

Hestia

Computational tool for generating generalisation-evaluating evaluation sets.

Tutorials GitHub

Contents

Table of Contents

Installation

Installing in a conda environment is recommended. For creating the environment, please run:

conda create -n hestia python
conda activate hestia

1. Python Package

1.1.From PyPI

pip install hestia-ood

1.2. Directly from source

pip install git+https://github.com/IBM/Hestia-OOD

3. Optional dependencies

3.1. Molecular similarity

RDKit is a dependency necessary for calculating molecular similarities:

pip install rdkit

3.2. Sequence alignment

# static build with AVX2 (fastest) (check using: cat /proc/cpuinfo | grep avx2)
wget https://mmseqs.com/latest/mmseqs-linux-avx2.tar.gz; tar xvfz mmseqs-linux-avx2.tar.gz; export PATH=$(pwd)/mmseqs/bin/:$PATH

# static build with SSE4.1  (check using: cat /proc/cpuinfo | grep sse4)
wget https://mmseqs.com/latest/mmseqs-linux-sse41.tar.gz; tar xvfz mmseqs-linux-sse41.tar.gz; export PATH=$(pwd)/mmseqs/bin/:$PATH

# static build with SSE2 (slowest, for very old systems)  (check using: cat /proc/cpuinfo | grep sse2)
wget https://mmseqs.com/latest/mmseqs-linux-sse2.tar.gz; tar xvfz mmseqs-linux-sse2.tar.gz; export PATH=$(pwd)/mmseqs/bin/:$PATH

# MacOS
brew install mmseqs2  

To use Needleman-Wunch, either:

conda install -c bioconda emboss

or

sudo apt install emboss

3.3. Structure alignment

# Linux AVX2 build (check using: cat /proc/cpuinfo | grep avx2)
wget https://mmseqs.com/foldseek/foldseek-linux-avx2.tar.gz; tar xvzf foldseek-linux-avx2.tar.gz; export PATH=$(pwd)/foldseek/bin/:$PATH

# Linux SSE2 build (check using: cat /proc/cpuinfo | grep sse2)
wget https://mmseqs.com/foldseek/foldseek-linux-sse2.tar.gz; tar xvzf foldseek-linux-sse2.tar.gz; export PATH=$(pwd)/foldseek/bin/:$PATH

# Linux ARM64 build
wget https://mmseqs.com/foldseek/foldseek-linux-arm64.tar.gz; tar xvzf foldseek-linux-arm64.tar.gz; export PATH=$(pwd)/foldseek/bin/:$PATH

# MacOS
wget https://mmseqs.com/foldseek/foldseek-osx-universal.tar.gz; tar xvzf foldseek-osx-universal.tar.gz; export PATH=$(pwd)/foldseek/bin/:$PATH

Documentation

1. DatasetGenerator

The HestiaDatasetGenerator allows for the easy generation of training/validation/evaluation partitions with different similarity thresholds. Enabling the estimation of model generalisation capabilities. It also allows for the calculation of the ABOID (Area between the similarity-performance curve (Out-of-distribution) and the In-distribution performance).

from hestia.dataset_generator import HestiaDatasetGenerator, SimilarityArguments

# Initialise the generator for a DataFrame
generator = HestiaDatasetGenerator(df)

# Define the similarity arguments (for more info see the documentation page https://ibm.github.io/Hestia-OOD/datasetgenerator)
args = SimilarityArguments(
    data_type='protein', field_name='sequence',
    similarity_metric='mmseqs2+prefilter', verbose=3
)

# Calculate the similarity
generator.calculate_similarity(args)

# Calculate partitions
generator.calculate_partitions(min_threshold=0.3,
                               threshold_step=0.05,
                               test_size=0.2, valid_size=0.1)

# Save partitions
generator.save_precalculated('precalculated_partitions.gz')

# Load pre-calculated partitions
generator.from_precalculated('precalculated_partitions.gz')

# Training code

for threshold, partition in generator.get_partitions():
    train = df.iloc[partition['train']]
    valid = df.iloc[partition['valid']]
    test = df.iloc[partition['test']]

# ...

# Calculate AU-GOOD
generator.calculate_augood(results, 'test_mcc')

# Plot GOOD
generator.plot_good(results, 'test_mcc')

# Compare two models
results = {'model A': [values_A], 'model B': [values_B]}
generator.compare_models(results, statistical_test='wilcoxon')

2. Similarity calculation

Calculating pairwise similarity between the entities within a DataFrame df_query or between two DataFrames df_query and df_target can be achieved through the calculate_similarity function:

from hestia.similarity import sequence_similarity_mmseqs
import pandas as pd

df_query = pd.read_csv('example.csv')

# The CSV file needs to have a column describing the entities, i.e., their sequence, their SMILES, or a path to their PDB structure.
# This column corresponds to `field_name` in the function.

sim_df = sequence_similarity_mmseqs(df_query, field_name='sequence', prefilter=True)

More details about similarity calculation can be found in the Similarity calculation documentation.

3. Clustering

Clustering the entities within a DataFrame df can be achieved through the generate_clusters function:

from hestia.similarity import sequence_similarity_mmseqs
from hestia.clustering import generate_clusters
import pandas as pd

df = pd.read_csv('example.csv')
sim_df = sequence_similarity_mmseqs(df, field_name='sequence')
clusters_df = generate_clusters(df, field_name='sequence', sim_df=sim_df,
                                cluster_algorithm='CDHIT')

There are three clustering algorithms currently supported: CDHIT, greedy_cover_set, or connected_components. More details about clustering can be found in the Clustering documentation.

4. Partitioning

Partitioning the entities within a DataFrame df into a training and an evaluation subsets can be achieved through 4 different functions: ccpart, graph_part, reduction_partition, and random_partition. An example of how cc_part would be used is:

from hestia.similarity import sequence_similarity_mmseqs
from hestia.partition import ccpart
import pandas as pd

df = pd.read_csv('example.csv')
sim_df = sequence_similarity_mmseqs(df, field_name='sequence')
train, test = cc_part(df, threshold=0.3, test_size=0.2)

train_df = df.iloc[train, :]
test_df = df.iloc[test, :]

License

Hestia is an open-source software licensed under the MIT Clause License. Check the details in the LICENSE file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hestia_ood-0.0.33.tar.gz (31.4 kB view details)

Uploaded Source

Built Distribution

hestia_ood-0.0.33-py3-none-any.whl (30.5 kB view details)

Uploaded Python 3

File details

Details for the file hestia_ood-0.0.33.tar.gz.

File metadata

  • Download URL: hestia_ood-0.0.33.tar.gz
  • Upload date:
  • Size: 31.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for hestia_ood-0.0.33.tar.gz
Algorithm Hash digest
SHA256 1438c2e5a939ff6b0bc5ac619f85e1795ce8880c2250ff57e4c8cc61bab9e195
MD5 1c75739677da12d33f8f4ac29f77b75e
BLAKE2b-256 4d739b5cbbd799942829deea66ed7afc3b88b22212b964f3181a6c6cf4b91b36

See more details on using hashes here.

File details

Details for the file hestia_ood-0.0.33-py3-none-any.whl.

File metadata

  • Download URL: hestia_ood-0.0.33-py3-none-any.whl
  • Upload date:
  • Size: 30.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for hestia_ood-0.0.33-py3-none-any.whl
Algorithm Hash digest
SHA256 e4639bc0339d64995643d7bb22d4c9c62140db3309c1321f4b49d25166d24a8d
MD5 9115d56bbca63e5eb2bd1bbb95be0235
BLAKE2b-256 7ee6ad8be6af8f0242144fe9731ee622750879f06924c7e35ae8d1f05b083cbe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page