Project Vi
Project description
"Hey Vi!"
HEYVI: Visym Analytics for Visual AI docs: https://visym.github.io/heyvi/
HEYVI is a python package for visual AI that provides systems and trained models for activity detection and object tracking in videos.
HEYVI provides:
- Real time activity Detection of the MEVA activity classes
- Real time visual object tracking in long duration videos
- Live streaming of annotated videos to youtube live
- Visual AI from RTSP cameras
Requirements
python >3.6
ffmpeg (required for videos)
vipy, torch, pytorch_lightning (for training)
Installation
pip install heyvi
Quickstart
v = heyvi.sensor.rtsp()
T = heyvi.system.Tracker()
with heyvi.system.YoutubeLive(fps=5, encoder='480p') as s:
T(v, frame_callback=lambda im, v: s(im.annotate(fontsize=15, timestamp=heyvi.util.timestamp(), timestampoffset=(6,10)).rgb()), minconf=0.2)
Create a default RTSP camera and GPU enabled object tracker, then stream the annotated video (e.g. boxes with captions and timestamps) to a YouTube live stream.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
heyvi-0.0.6.tar.gz
(103.2 kB
view details)
Built Distribution
heyvi-0.0.6-py3-none-any.whl
(110.9 kB
view details)
File details
Details for the file heyvi-0.0.6.tar.gz
.
File metadata
- Download URL: heyvi-0.0.6.tar.gz
- Upload date:
- Size: 103.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fc6bd9ee1c9fb41782e40315810013425f042cd54d271bb4b39111ee03a5f75d |
|
MD5 | cc67fcc2949007f94ec8d29211369587 |
|
BLAKE2b-256 | d194fb6699d172e7ec2d01edbddf6296e714bbabf5addf8d4edef5b37c8711e6 |
File details
Details for the file heyvi-0.0.6-py3-none-any.whl
.
File metadata
- Download URL: heyvi-0.0.6-py3-none-any.whl
- Upload date:
- Size: 110.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 77a4ccc00ec19eb0747b51957f0212c81dc7bf34fe37064f74fdd790c373f21c |
|
MD5 | 1920dbf002b2b2e8176f049047b2a65b |
|
BLAKE2b-256 | d06060e09ae875a30277f63f824d5659b2d452059afabcf38bfb96716aff91b1 |