Project Vi
Project description
"Hey Vi!"
HEYVI: Visym Analytics for Visual AI
docs: https://developer.visym.com/heyvi
HEYVI is a python package for visual AI that provides systems and trained models for activity detection and object tracking in videos.
HEYVI provides:
- Real time activity detection of the MEVA activity classes
- Real time visual object tracking in long duration videos
- Live streaming of annotated videos to youtube live
- Visual AI from RTSP cameras
Requirements
python 3.*
ffmpeg (required for videos)
vipy, torch, pytorch_lightning (for training)
Installation
pip install heyvi
Quickstart
v = heyvi.sensor.rtsp().framerate(5)
T = heyvi.system.Tracker()
with heyvi.system.YoutubeLive(fps=5, encoder='480p') as s:
T(v, frame_callback=lambda im: s(im.pixelize().annotate()))
Create a default RTSP camera and GPU enabled object tracker, then stream the privacy preserving annotated video (e.g. pixelated bounding boxes with captions) to a YouTube live stream.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
heyvi-0.2.13.tar.gz
(442.7 kB
view details)
Built Distribution
heyvi-0.2.13-py3-none-any.whl
(137.4 kB
view details)
File details
Details for the file heyvi-0.2.13.tar.gz
.
File metadata
- Download URL: heyvi-0.2.13.tar.gz
- Upload date:
- Size: 442.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.55.2 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e8aada97795f19b4a3efe13a762e80c892cbd13258a1f6bd8fd71d5d0b1af11b |
|
MD5 | 4d545885a99fe68bbf16bac08b29c070 |
|
BLAKE2b-256 | bd27be20c16078df3e0f083c6a633c2e5162284176d3f2cb3688f6a3f32c1af4 |
File details
Details for the file heyvi-0.2.13-py3-none-any.whl
.
File metadata
- Download URL: heyvi-0.2.13-py3-none-any.whl
- Upload date:
- Size: 137.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.55.2 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b4e91edea8a8813cf369db05687606592912e719f9dd39d0444ae6b1a09b26e1 |
|
MD5 | 6645441d6cda36d7bb7e7e3542a13938 |
|
BLAKE2b-256 | 4da2e5a8277576b9c92bfbfb7e6dd4b0c1c1f80829a01b5c21a1d61d359dacb0 |