Project Vi
Project description
"Hey Vi!"
HEYVI: Visym Analytics for Visual AI
docs: https://developer.visym.com/heyvi
HEYVI is a python package for visual AI that provides systems and trained models for activity detection and object tracking in videos.
HEYVI provides:
- Real time activity detection of the MEVA activity classes
- Real time visual object tracking in long duration videos
- Live streaming of annotated videos to youtube live
- Visual AI from RTSP cameras
Requirements
python 3.*
ffmpeg (required for videos)
vipy, torch, pytorch_lightning (for training)
Installation
pip install heyvi
Quickstart
v = heyvi.sensor.rtsp().framerate(5)
T = heyvi.system.Tracker()
with heyvi.system.YoutubeLive(fps=5, encoder='480p') as s:
T(v, frame_callback=lambda im: s(im.pixelize().annotate()))
Create a default RTSP camera and GPU enabled object tracker, then stream the privacy preserving annotated video (e.g. pixelated bounding boxes with captions) to a YouTube live stream.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
heyvi-0.2.18.tar.gz
(456.5 kB
view details)
Built Distribution
heyvi-0.2.18-py3-none-any.whl
(154.1 kB
view details)
File details
Details for the file heyvi-0.2.18.tar.gz
.
File metadata
- Download URL: heyvi-0.2.18.tar.gz
- Upload date:
- Size: 456.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.55.2 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bac6eab60d89ebc45b0e544888c8aad01b863d4a5655209ed10591673968ce44 |
|
MD5 | cf37d4661fa40e5954f448fda60b9863 |
|
BLAKE2b-256 | 89d503e72a9815551845005a3a2567132da3d274ec3fa9f93136cc906d4c1c0a |
File details
Details for the file heyvi-0.2.18-py3-none-any.whl
.
File metadata
- Download URL: heyvi-0.2.18-py3-none-any.whl
- Upload date:
- Size: 154.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.55.2 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 68bb4a80f80d2cd0f92362537663c6f5b639b4c9e2a8d1fac82fc7700a1b38d7 |
|
MD5 | b5b7f617196424fa2157efde33b83c74 |
|
BLAKE2b-256 | e2b293534c322d53733d82f99cde7326e7409c3fafa90f69d0e2a96f9bcc5bb3 |