Project Vi
Project description
"Hey Vi!"
HEYVI: Visym Analytics for Visual AI
docs: https://developer.visym.com/heyvi
HEYVI is a python package for visual AI that provides systems and trained models for activity detection and object tracking in videos.
HEYVI provides:
- Real time activity detection of the MEVA activity classes
- Real time visual object tracking in long duration videos
- Live streaming of annotated videos to youtube live
- Visual AI from RTSP cameras
Requirements
python 3.*
ffmpeg (required for videos)
vipy, torch, pytorch_lightning (for training)
Installation
pip install heyvi
Quickstart
v = heyvi.sensor.rtsp().framerate(5)
T = heyvi.system.Tracker()
with heyvi.system.YoutubeLive(fps=5, encoder='480p') as s:
T(v, frame_callback=lambda im: s(im.pixelize().annotate()))
Create a default RTSP camera and GPU enabled object tracker, then stream the privacy preserving annotated video (e.g. pixelated bounding boxes with captions) to a YouTube live stream.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
heyvi-0.2.8.tar.gz
(442.2 kB
view details)
Built Distribution
heyvi-0.2.8-py3-none-any.whl
(137.0 kB
view details)
File details
Details for the file heyvi-0.2.8.tar.gz
.
File metadata
- Download URL: heyvi-0.2.8.tar.gz
- Upload date:
- Size: 442.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.55.2 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c9c045a89fa4c9eb169dc832ab711de2b1c2c46914e4bd94f66fedfaa2bd8390 |
|
MD5 | 6e3d4697d04b92295d118fb14b3f4fb2 |
|
BLAKE2b-256 | 6559bb98594b73fe218b7c871fbd65c7aca5fda65cf843e34a25ad0a540b2ba8 |
File details
Details for the file heyvi-0.2.8-py3-none-any.whl
.
File metadata
- Download URL: heyvi-0.2.8-py3-none-any.whl
- Upload date:
- Size: 137.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.55.2 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7faf531bb96224a3cc85a27c0d3d18147258581320e756196fd9096f81f4764f |
|
MD5 | 913bb273c248a39d683910692505cf16 |
|
BLAKE2b-256 | 16ed217a6e47a733fe8661887de84c65c62fbbbc1fc9e49822fc2bce74e65719 |