Skip to main content

No project description provided

Project description

Hugging Face Dataset Structurer

Hugging Face Dataset Structurer is a Python wrapper to simplify the process of deploying multi-config datasets to the Hugging Face Hub. We developed this tool because we found the official documentation to be lacking in detail and creating the perception the process requires a manual step to develop a dataset loading script. You don't need to do that! This tool will do it for you.

Installation

pip install -U hf-dataset-structurer

Quickstart

In this example, we will create a bundle for Portuguese NER. Official HuggingFace HAREM dataset entry it's true name is "first-HAREM". We will create a bundle attaching the second-HAREM available here. This dataset has two labelling schemes, DEFAULT and SELECTIVE. Selective is just a coarse-grained version of DEFAULT. These two schemes turn this dataset a good candidate to demonstrate the power of this tool.

from datasets import load_dataset, concatenate_datasets, DatasetDict 
from hf_dataset_structurer.DatasetStructure import DatasetStructure

structurer = DatasetStructure("<<TARGET Hugging Face Dataset Name>>")

# Iterate both Labelling Schemes
for config in ["default", "selective"]:
    # Load Official HAREM Dataset
    primeiro_harem = load_dataset("harem", config)
    
    # Start Structuring Process
    structurer.add_dataset(primeiro_harem['train'], f"primeiro_harem_{config}", split="train")

# Load Second HAREM Datasets

second_harem_default = load_dataset("arubenruben/segundo_harem_default")
second_harem_selective = load_dataset("arubenruben/segundo_harem_selective")

# Notice the function used now is add_dataset_dict. A [DatasetDict](https://huggingface.co/docs/datasets/v2.15.0/en/package_reference/main_classes#datasets.DatasetDict) is a native HuggingFace object that represents a dictionary of datasets.
structurer.add_dataset_dict(second_harem_default, "segundo_harem_default")
structurer.add_dataset_dict(second_harem_selective, "segundo_harem_selective")

# Create Dataset Card to describe the dataset
structurer.attach_dataset_card(
    language="pt",
    license="cc-by-4.0",
    annotations_creators=["expert-generated"],
    task_categories=["token-classification"],
    tasks_ids=["named-entity-recognition"],
    pretty_name="HAREM",
    multilinguality='monolingual'
)

# Push to Hugging Face Hub
structurer.push_to_hub()

API Reference

# Initializes a new instance of the DatasetStructure class.
__init__(self, repo_name: str) -> None

# Accepts a DatasetDict and a config_name and adds it to the dataset structure.
add_dataset_dict(self, dataset_dict: DatasetDict, config_name: str) -> None

# Similar to add_dataset_dict, but accepts a Dataset and a split. Internally, it creates a DatasetDict and calls add_dataset_dict.
add_dataset(self, dataset: Dataset, config_name: str, split: str = "train") -> None

# Attaches a dataset card to the dataset structure.
attach_dataset_card(self, language: str,
                    license: str,
                    annotations_creators: str,
                    task_categories: str,
                    tasks_ids: str,
                    pretty_name: str,
                    multilinguality: str = 'monolingual') -> None

# Pushes the dataset structure and dataset card to the Hugging Face Hub.
push_to_hub(self, private: bool = False) -> None

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

License

MIT

Acknowledgements

This tool was developed by Ruben Almeida as part of the Project PT-Pump-Up. PT-Pump-Up is a project funded by INESC TEC and the Portuguese Government through the Fundação para a Ciência e a Tecnologia (FCT) that aims to build Portuguese NLP resources and tools to support the development of NLP applications for Portuguese.

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hf_dataset_structurer-0.0.3.tar.gz (4.5 kB view details)

Uploaded Source

Built Distribution

hf_dataset_structurer-0.0.3-py3-none-any.whl (5.8 kB view details)

Uploaded Python 3

File details

Details for the file hf_dataset_structurer-0.0.3.tar.gz.

File metadata

  • Download URL: hf_dataset_structurer-0.0.3.tar.gz
  • Upload date:
  • Size: 4.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for hf_dataset_structurer-0.0.3.tar.gz
Algorithm Hash digest
SHA256 4b54a32909368618eea2cbe35700f1dc25ccd43162a3a5fa0e67463f2efb1314
MD5 097211c56ad52e8a7dccf743342ceb4a
BLAKE2b-256 21e88174edc1ed1ef34557c74055507e005e974ded213da980ebdf959c0cc52c

See more details on using hashes here.

Provenance

File details

Details for the file hf_dataset_structurer-0.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for hf_dataset_structurer-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 3c40762842a96fe84dba735a9da65be02f3199b8ea49fe894b4a69c3a9037a14
MD5 2f6384ec9173ff7f6e432b8130073947
BLAKE2b-256 f9378baf78381a9ee2d5e7ea186e6d13844e14302747913a20f45446259dcfd7

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page